U.S DEPARTMENT OF COMMERCE
Mational Technical Information Service

AD-AQ028 962

A Research Program
in Computer Technology

University of Southern California

July 1976

oy

W

TRORTRA AT

245050

-

USCZINFORMATION SCIENCES iNSTITUTL

6070 Admaalny B

Munoaa icd Rey Califonrte 90291

ARPA ORDER NO. 2223
ISI SR 76-6

{
" A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

Annuai Technical Report
July 1975 - Junc 1976

prepared tor the

&N
O
op
0
N
-
<.
o
<<

Defense Advanced Research Projects Agency

| DISTRIBYT DN STATEMENT A ‘

. REPRODUCED BY ‘Approved for public release;

. N " WOV TN
;. NATIONAL TECHNICAL Disuibution " ' mited : IS 5‘.1,
! INFORMATION SERVICE : X
S S o e NGl
. — UNIVLRSITY 0F AOUTHIRN CHITORNL E 8D

L

TTTOE

C TSR oy

T IR TUTCrTIOT

TIAVE

N TL W Ban v o ohmar e W v

B Y oA, ST SR N AT IS N ATe

StL . RY” LASSIFICATION OF TwWIS PAGE When Dete Enteted)

UNCLASSIFIED

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

REPCOR™ NUMBER 2 GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER

I1St,'SR-76-A

4

-
$ YYPE OF RILPORT & PERIOD COVERED
Annual Vechnical Report

July 1975-June 1976

6. PERFORMING ORG. REPORT NUMBER

TITLE ant Subsrrley
A Research Program in Computer Technoiogy,
Annual Technical Report, July 1975-June 1976,

8 CONTRACT OR GRANT NUMBER(s)

2
IS! Research staff DAHE“JS 72 € 0308

AL T =0ORs

9 PERFORMING DRGANIZATION NAME AND ADDRESS

10 PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA Order #2223
Program Code 3D30 & 3P10

USC/Information Sciences Institute
LE76 Admiralty Way
Marina del ey, CA 90291

“ONTROLLING OF FICE NAME AND ADDRESS | 12 REPORT DATE
Defense Advanced Research Projects Agency July 1976
1400 Wilson Blvd, 13. NUMBER OF PAGES

Arlington, VA 22209 98

‘4 MTNITARING ABZENTY NAME & ADDRESS/! different from Controlling Office) 1S SECURITY CLASS. (of thia report)

Unclassified

- . - -

1Sa OECLASSIFICATIONM DOWNGRADING
SCHEDULE

16 DiSTRIBUTION STAYEMENT /of this Report)

This document is approved for public release and sale; distribution unlimited.

T DISTR/BUTION STATEMENT (of the abatract entered in Block 20, ¢{f different from Report)

- -

18 SUPPLEMENTARY NOTTS

19 XEVv WORDS 'Continue on revarse atde il n>censary and identily by block number)

I. agbstract data type, abstraction and representation, Alphkard, Euclid,
interactive theorem proving, lemna qenerator, Pascal, program correctness,
program verification, software specification, verification condition

2: ARPANET. control memory, emuiators, microprogramming, microprogramming
lanquaae, microvisor, MLP-900, National Software Works, operatinag (QVER}

27 ABSTRAIZT ‘Continue on reverse side {f necevsary and identify by block number,

This report summarizes the research performed under Contract

DABC 15 72 C 0308 by USC/Information Sciences Institute f{rom

1 July 1975 to 30 June 1976. The research is aimed at applying
computer scicnce and technoiogy Lo problem areas of high DoD/miiitary
inpact,

(OVER)

oD “i:‘:) 1473 c=0iTi0M OF 1 NOV 65 1S OBSOLETE
SN 102-014-6601)
!

UNCLASSIFIE)
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ey
A b g =

(HANGE

i
m«w.w..wnuﬁ

W) o v

PRV

oy

N SN

b L

N TN

A Py

LS

id

T BNV 49750 S

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

19. KEY WORDS (continued)

systems, resource sharing, TENEX, time sharing, writable control memory.

: abstract programming, domain-independent interactive system, natural
language, nonprocedural language, nonprofessional computer users,
problem solving, problem specification, process transformation.

L: access control, comnnuter security, encapsulation, error analysis,
error-driven evaluation, error patterns, evaluation methods, protection
mechanisms, software security.

5: computer terminals, interactive message service, office automaticn,
nonprofessional computer users, terminal-based message service.

6: computer network, digital voice communication, network conferencing,
packet-switched networks, secure voice transmission, signal processing,
speech processing, vocoding.

7: distributed computation system, document printing capability, National
Software Works, networks, network terminal, text printing, Xerox Graphics
Printer.

8: ARPANET interface, computer network, KA/Ki, KL2040, PDP-10, PDP-11/40,

resource allocation, TENEX, TOP$20, user quotas.

W iN
.e

20. ABSTRACT (continued)

The ISI program consists of eight research areas: Program Verificaticn -~
logical proof of program validity; Programming Research Instrument --
deveiopment of a major time-shared microprogramming facility; Specification
Acquisition From Experts -- the study of acquiring and using problem
knowledge for making informal program specifications more precise;
Protection Analysis -- methods of assessing tnhe viability of security
mechanisms of operating systems; Information Automation -- development of a
user-oriented message service for large~scale military requirements;

Network Secure Communication =-- work on low-bandwidth, secure voice
transmission using an asynchronous packet-switched network; Special Projects
-- a variety of activities and hardware developments in support of Institute
programs; and ARPANET TENEX Service ~=- operation of TENEX service and
continuing development of advanced support equipment,

UNCLASSIFIED
1o/

SECURITY CLASSIFICATION OF THIS PAGE(When D&ta Entered)

Yl an e k2 b il

N Gy kS A N
sy d s SHLXE | SRR RISyl co v 8k 4 — ‘
u e et bt e ol i Mtk ik s

;
]
]

&L}a(-.u,h«y;m

2 L, Lt X X8 z
W 3 W VAL = ATV E LR At e nt A o riati s e e g ac e g TN I IR RT IR TS T T T N F Y (e, YT TR T AR

)

i3 s e e Cee - . - -

i
Ny

USC/INFORMATION SCIENCES INSTITUTE 4676 Adnuralty W un - Marina del Rey Cal:fornia 90291

ARPA ORDER NO. 2223
ISI/SR-76-6

e — vy

A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

Annual Technical Report
July 1975 - june 1976

%

prepared for the

i

Defense Advanced Research Projects Agency

- i
-~
by i 0

it S

Effective date of contract: 17 May 1912

Contract expiration date: 36 September 1978

A e ARrr AT M S8 e b -

Amount of contract: $17,996,485
Principal Investigator Keith W. Uncapher
and Director: (213) 822-1511

Deputy Director: Thomas O. Ellis
(213) 822-1511

i

This research Is supported by the Defense Advanced Research Projects Agency under Contract
No. DAHCIS 72 C 0308, ARPA Order No. 2223, Program Code No. 3D30 and 3PI0.

Views and concluatons contained in this study are the authors’ and should not be interpreted as representing
the official opinion or policy of the U.S. Government or any other person or agency connected with them

This document is approved for public reiease and sale; distribution is unlimited.

e L UNIVERSITY OF SOUTHIRN CALIFORNIA

oA S AV Y Dees s 2l il RN b s

|
k.

i
¢
5
4
.
3
~$
:
b
:
3
<
4

G

ple s

TRNTT IR A TR L

RESEARCH & ADMINISTRATIVE SUPPORT

Institute Administration:

Robert H. Blechen
Katherine Cclegrove
Judy Gustafson
Georgene Petri

Librarian:
Rose Kattlove

Publications Group:
Nancy Bryan
Katherine Colegrove
G. Nelson Lucas

Secretaries to Directors:
Jeannette Christansen
Patricia A. Craig

ORI ITS

REFTLVE

I S

~
E
R
A

e M- 4

My

1, A
SN oy

N T Ty e A T — Tt esg e
g X e 7503 T L R e R Y g Y e

L

<

AN P AT 2RO A

CONTENTS

Summary o
Executive Overview vif

1.

8.

Program Verification 1

Programming Research instrument 13
Specification Acquisition From Exparts 23
Protection Analysis 35

Information Automation 40

Network Securs Communication §3
Special Projects 70

ARPANET TENEX Service 89

Publications 86

i Mg vy a3

P

SEIS NI TN

Rt S ala A taaan A A R a8, B gy o

N R A A 1 Rt T A LI N Tl 820 o u]

TR e b ot e e —reom e

e

e TR R T R UL,

TS

IS A T AFCT TS,

Bieiitas -y oy

SUMMARY

This report summarizes the researck by USC/information Sciences Institute from
1 July 1975 to 30 June 1976. The research is aimed at applying computer science and
technology to problem areas of high DoD/military impact.

The ISI program consists of eight research areas: Program Verification--logical proof
of program validity; Programming Research Instrument--development of a major
time-shared microprogramming facility; Specification Acquisition From Experts--the study
of acquiring and using problem knowledge for making informal program specifications more
precise; Protection Analysis--methods of assessing ihe viability of security mecnanisms of
operating systems; Information Automation--development of a user-oriented message
service for large-scale military requirements; Network Secure Communication--work on
low-bandwidth, secure voice transmission using an asynchronous packet-switched r-twork;
Special Projects--a variety of activities and hardware developments in support of Institute
programs; and ARPANET TENEX Service--operation of TENEX service and continuing
development of advanced support equipment.

vii

EXECUTIVE OVERVIEW

The information Sciences Institute (IS1), a research unit of the University of Southern
California’s School of Engineering, was formed in May 1972 to perform research in the
fields of computer and communications sciences with an emphasis on systems and

applications.

A close relationship is maintained with USC academic programs through active
cooperation among the Institute, the School of Engineering, the Department of Electrical
Engineering, and the Computer Science Department. Ph.D. thesis supervision is an integral
part of ISI programs, as is active participation of research assistants supporting ISl
projects. S| staff members frequently direct or participate in nationwide and inlernational
meetings and conferences; the institute also hosts frequent colloquia and seminars as a
forum for distinguished speakers from other organizations.

The character and uniqueness of IS! are expressed in the foli:wving objectives:

® A major university-based computer science resezrch center.

® A center with a largely full-time staff of researchers, augmented by
graduate students and facuity.

o A center which possesses a unique biend of basic research talent and :
application and system expertise. The last two attributes are of special '
significance to the application of computer science and technology to key

military problems.

AT A g =

Y P e

® A university-based research center with strong active ties to the
U.S. military community and a strong leadership role in identifying key
computer R&D requirements in support of long-term military needs.

The Institute is structured to provide research and development capability at the
system level--often required tc assure an understanding of real problems and to provide
useful solutions ir iransferable form. Project leaders share visibly in the responsibility
for the conduct of each project and for the quality and impact of the reseasrch. At the
end of the fourth year of operation, the full-time professional research staft numbers 43,
The total number of ISl employees--including full-time research staff, participating faculty

and graduate students, and support personnet--is 85.

R O R e S) P N P I N T ST

R e

SEabir

T

T NN 37 R 7A R T oy oKy 7

T

EXECUTIVE OVERVIEW viii

The activities of ISI’s eight major areas of research and associated support projects
are summarized brieily below. Some of the research projects reported in this document
are discrete activities in themselves; others can be seen as parts of a larger whole. For
example, Program Verificaticn, Specification Acquisition, and the Programming Research
Instrument projects should be considered as individual parts of an overall research effort
in Programming Methodology; Irformation Automation, Network Secure Communicatic 1, and
Special Projects are linked elementz of a major investigation into Network Communications
Technology. These mutual interdzpendencies among the various projects at IS! contribute
largely to the fruitfulness of the Institute’s research activities.

Program Verification. The goal of program verification research at ISl is to develop
an effective program verification system for proving that computer programs are
consistent with precisely stated detailed specifications of what the programs are intended
te do. The system is expected to replace significant parts of testing in current software
development, and will also provide important tools for developing and judging the success
of new programming language designs, new programming methodologies, and new detailed
specification techniques. Already running at ISl is an initial, experimental version of an
interactive program verification system whose design philosophy is to provide automatic
assistance for the verification process where practical, and otherwise to rely on human
int- "action. The system has verified numerous example programs. Impertant progress
has been made in the following areas: improved user environment and interface to the
verifier, extensible verification generator, algebraic approach to data abstractions including
their verification, and influence of verification on language design. The eventual impact
will be an increase in the quality of software.

Programming Research Instrument. PRIM 1s an interactive microprogrammable
environment used for the emulation of existing or newly specified computer systems with
major emphasis on providing debugging tools, These tools, available via NSW, provide the
users with more powerful debugging facilities than available in the originai target
computer systems. The facility consists of a powerful microprogrammable computer
(MLP-900), clusely coupled to a TENEX operating system, and software to permit users to
create and debug new emulators and target sy.tems. Two prototype emulators, the
UYK-20 and the U1050, have been completed and have been integrated into NSW. PRIM is
an 2ttempt to generalize a solution to the problem of software development through the
use of emulation fools.

Specification Acquisition From Experts. The major effort of the SAFE project is
simpiy to allow users who are not computer programmers to functionally specify their
application directly to a computer system, with the system transforming this input into a
precise functional specification of the application, This system is intended to be both
independent of any particular problem domain and able to deal with "loose" ie.,
incomplete, inconsistent, etc.) problem-oriented descriptions of a domain through a
dialogue with the user. From this dialogue the system can acquire the "physics” (the
objects, laws, relationships, etc.) of the loosely-defined domain, structure it, and use it to

A Eor SRR SIS MY ...m-,.l.vl.\ﬂy:mth Pt AN RIS SN it AT RO T T I T I BT T, T T T T R T

W

TSR T VIRV VI TR A R . S
3 _m,mfw. T e I L R RS T T, AT N L TR SN T v DR R e s oo ey
g ~ ’ Pl O Y =5

8%

EXECUTIVE OVERVIEW iX

PR RS

understand further communication and finally to rewrite the specification in precise
operational form. Tho system is being developed in the context of a simplified real-world
military specifications manual. An informal, incomplete specification for first-ievel message
distribution has successfully been converied to a precise operational form. The sysiem is
naw being expanded to deal with more complex specifications.

R N AR D ST A T IR

‘rotection Analysis. The goal of this project is to develop efficient techniques and
sem omated toois for detecting in operating systems various types of protection errors,
i.e., errors that allow the systems to be corapromised. The approach is empirical, based on k
the observations that (1) protection errors fall into a limited number of distinct classes and X
(2) techniques can be developed for finding the errors associated with each class. The
method is to collect a data base of known errors, use it to determine the error classes,
and (for each class) identify the relevant error characteristics for the purpose of J
developing an effective search algorithm. To date, errors from a variety ot systems have
heen collected and techniques for finding errors for three nf the classes have been
reported. The project proposes to analyze and report on the remaining seven error

classes.

Information Automation. The Information Automation project has a dual goal: 1) to
develop the technology for providing on-line computer services directly to untrained users
and 2) to dev=lop a secure, on-line, interactive writer-to-reader message service for the
military community. Such an on-line message service, new to the military, provides
interactive assistance for formal messages from the initial draft preparation through 3
coordination, transmission, and distribution. In addition, it will provide informal secure f
"off-the-record” communication to reduce the need for face-to-face meetings. During the
past year the IA message service has progressed from a design on paper to a
rear-operational system. it is to be put at CINCPAC Headquarters on Ohau for formal
testing in an operational environment, beginning in July 1977.

. Network Secure Communication. The major objective of ARPA’s Network Secure 4
‘ommunication project is tc develop secure, high-quality, low-bandwidth, real-time,
\ vo-way digital voice communication over packet-switched computer communication
! networks. This kind of communication is a very high priority military goal for all levels of
i command and control activities. ISP’s role in this effort is to develop efficient
user-oriented systems for digital voice communications, primarily over packet-switched
networks such as the ARPAN' but also locally. The ISI NSC project is working on
network voice protocols, digitai voice conferencing systems, voice-oriented network host
operating systems, real-time signal processing, hardware development, and other areas.
During the past year (1) the Network Voice Conferencing Protocol (NVCP) was developed,
(2) a sophisticated !ccal CVSD conferencing system was implemented, (3) a
signal-processor-based demonstration system was specified, proposed, acquired, and is
being tested, and (4) the ELF operating system for the PDP-11 was extensively revamped
and augmerted to form the EPOS operating system.

SRR R e R I 2 e aTi N,

—

ar

- e

7 el W h e & SN s

P TR TN I TPy

Ty e e e M_J

EXECUTIVE OVERVIEW X

Special Projects. The major efforts for the current year were as follows. First,
further development was carried out on ISP’s and ARPA’s Xerox Graphics Printer (XGP), a
high-quality printing capability in the form of a network terminal. Second, 13| reviewed
technical progress and provided intormation and consultant service for the National
Software Works, an ARPANET-based distributed operating system that is intended to
provide a uniform computing environ.ent for software developers. The third area is that
of providing good human engineering for the military message service being developed by
the Information Automation project. To this end, ISl is writing firmwzre to be used in a
modified Hewiett-Packard 2640A terminal. The goal i1s to provide nearly instantaneous

feedback for simple editing functions and flexibility by means of dynamic computer control
of the range of available functions.

ARPANET TENEX Service. ISl is supporting, operat ng, and maintaining three
complete TENEX systems on a schedule of 161 hours per week each, in order both to
provide TENEX service to ARPA and to support its research projects via the facilities at 1Sl
The Institute provides 24-hour availability of TENEX systems, maintenance, and operators,
continued development/improvement support, support of the XGP at IPTQ, as well as ARPA
NLS user support and minimal NLS software support. Through this support we have
achieved increased long-term up-time, faster repair and improved preventive maintenance,
economy of scale in operation, and the benefits of ISI expertise in establishing
requirements for optimal foading and high reliability. In addition, this experience is used

to assist in improving system reliability and to increase the number of users which can be
handled with required response time.

A fray ¥R

i A e Nz

pes e ati s

At A il M A,

%’aa&(mm‘.y&ﬁ B R S SRS B

Ny m AT R sk, ST VIR PR ARE R S, BT

1
PROGRAM VERIFICATION

Research Staff: Research Assistants: Consultant: Support Staff:
Ralph L. London Donald S. Lyrin Lawrence M. Fagan Betty Randall
Raymond L. Bates Mark S. Moriconi
David R. Musser David G. Taylor
David S. Wile

Martin D. Yonke

GOALS AND IMPACT OF PROGRAK VERIFICATION

In many computer application areas the consequences of a program not performing
as intended can be quite costly or damaging. The poal of program verification research at
ISt is to develop a protutype program venfication system for proving that programs are
consistent with precisely stated detaied specifications. With such a system one will be
able to achieve significant confidence that computer programs wili perform as intended.
This system will be an important part of finding solutions to the manifest problems of
current software systems--their high cost, their unreliable behavior, the difficulty of
madifying them, etc. [Goldberg73]. The sysiem will be used to help certify that software
is correct; it is expected to replace significant parts of testing in current software
development. It may be used in some cases to help determine whether protection and
security specifications are met. The immediate impact will be that at last programmers will
be able to demonstrate that their programs meet specifications. The system will also
provide important tools for developing and judging the success oi new programming
language designs, new programming methodologies, and new detailed specification
techniques. The eventual result of advances in program verification wili be an increase in
the quality of software,

Last year’s ISI Annual Report [AR75] contains a description of the existing
verification system, named XIVUS, including an example of its use. During the current year
we have demonstrated important progress in the following areas:

® Improved user environmeni and interface to the verifier.
e Extensible verification conditior: generator,
® Algebraic approach to data sbstractions, including their verification.

“«

o Impact of verification on programming language design.

Each of these achievements contributes to the overall goal cf producing an effective
interactive system for verifying significant programs that are written in several languagas
and that use current structuring and decomposition techniques. The results in each of the
four areas are described sequentially below.

B e e B o e o g+ TR TETE ORI RREER T e ey

ey

&>

NPPPLINF TP WIS

PR e W W S AR

I

G 2 A e e b < Sl LA KA AT e A el M T U S RS A R A v dae o2~ —aiede el Sl aE gl & e 20 SR 8T

PROGRAM VERIFICATION 2

A IMPROVED USER ENVIRONMENT

-
3 48

PRI RIS

: Program verification is a complex process. Consequently, part of the current
\ verification effort is aimed at providing an environment which is helpful to the user whose
goal s to verify a set of programs representing the solution of a particular task. During
this year, three modifications were made to the verification system towards providing the
desired environment. ;

1. A new "topievel,” called the EXECUTIVE, was designed and implemented. It provides
a new command structure which guides the user through the verification process.

i 2. A user profile package was installed so that each individual may "tune” the system
to his ideas of how the verification process is best performed.

! 3. The theorem proving component has been modified; it has a new, simpler command
structure and records information used as the basis for any proved theorem.

The additions to the system are further explicated below, including the specific
motivations for each addition. 1

New EXECUTIVE

The new EXECUTIVE was desigihed to ease the user through the verification process
{a more detailed description, including an extensive transcript, can be found in [Yonke76]).
Several specific factors were considered in its design:

° Only operations which make sense in the current state of verification are available
to the user. For example, if the verification conditions have been generated for all
the functions and procedures of the problem, then the "GENERATE verification
conditions” command does not make sense. This implies that the available
commards dynamically change based on the current state of verification.

[ORPURFEDRL 2. S XX PRS- FICIFWLY. 556 PRI, T3 PL NP AN

' ltem one should also apply to parameters or subcommands of the system. For
example, the PROVE command should accept, as an item to prove, only verification
conditions not already proved.

e The user of the XIVUS verification system should not be frustrated by giving an
erroneous command and having the system respond with a "do not undetstand”
message.

A R e IR AT L AT A ALY, L AL R A S s

° The system should always have a reasonable sugge=tion for the next verification
step until the entire verification process is complete. Causing the current
suggestion to be performed should be very simple without impedinrg in any way
the user’s invoking any other reasonable operation tc be performed. :

o r

IR S et A

PROGRAM VERIFICATION 3]

) The usar should have, at any pcint witnin the command structure, a simple way to
interrcgate the system for a list of the next alternative commands or parametars.

Raki (o i R g

These goals were achieved by a command structure which exhibits the following
characteristics:

A ® Command completion is similar to TENEX EXEC command completion. That is, if
enough characters have been typed to disambiguate the command, then either
typing the escape key (esc) or the space bar (sp) will be sufficient. Typing esc
completes the command, including “noise words,” while sp does not. The difference
between this and the TENEX EXEC is that the system will rot let you type in an
“illegal™ character, while TENEX will.

® There is one exception to the completion algorithm described above. Verification

condition names are essentially the program name used to generate them and a
: number (used to identify different verification conditions within a program). When
the system is expecting the user to input a verification condition name, after the
user has typed a sufficient number of characters to identify the program name, the
rest of the name is automatically printed out to the point where a number is
needed. The user can then type the verification condition rumber. This
eliminates the need for excessive typing. k

® The command structure is tree-like in the sense that some commands take
subcommands, which in turn might take subcommands. For example, the PRINT
command is used to print programs, verification conditions, and verification status.

Soaal.

it

® At any point in the command structure, as mentioned above, the user may type a
question mark (?) and the lList of the next alternatives is printed out. In the
example above, if the user typed a ? after he had specified that he wanted to print i
a verification condition, a list of the verification conditicns would be printed.

X

@ Also, at any point in the command structure, the user may back up one ' vel by 3
typirg a special key. He may then reselect from the menu presented. 'S may
be repeated; therefore, after typing this special key a sufficient number of times,
the user will be back at the top of the command structure.

® The space bar (sp) serves a special purpose at the beginning of a command or
subcommand. If typed, the system suggestion is automatically taken and the
F: command is typed out instead of the space. Therefore, if the user always wanted
3 to take the system’s suggestion, all he need do is hit the space bar.

et man e Alaas 2T e anT AL

The new EXECUTIVE greatly increases the ease of using the verification system. It
shonuld also be helpful in bringing new users up to competence quickly.

PROGRAM VERIFICATION 4

User Projile Pactu e

The user profile package was motivated by two basic needs. One was to bring
together, in a cohesive package, all the internal flags already in the system. These flags
were knov'a by the implementors, but this knowledge was hard (0 pass on. The other
motivation was to have certain informat'cn about how each individua! user wanted the
system to perform for him. This information was incorporated into the system. The user
profile package initiates an English dimogue with the user, asking him the appropriate
questions. After the user respcns> is interpreted, the internal flags are set. This
package should be very helpful for a new user; since he can enter the dialogue at any
time, he can change the system as he progresses in using the verification system.

Theorem Prover Modifications

Two modifications were made to the theorem prover. The first was to design a new
command structure, similiar to that of the EXECUTIVE. During this process, new commands
were chosen to (1) make the commands reflect the operations performed and (2) combine
into one command operations which previously had to be done in a particular sequence.
See [Yonke76] for a more complete description, The second addition was motivated by
the fact that the user had to remember what he used for the basis of the proof of a
particular theorem. The theorem prover now sends information to the EXECUTIVE, which
remambers and can report which lemmas and rewrite rules--the basis for the proof--were
used to prove a particular theorem.

This work on the verification system has made it much more usable, for both
veteran and novice users. It helps the user by both guiding him through the verification
process and keeping track of information which was formerly the user’s reponsiblity.
Even though it is possible to live without the new facilities, we insist on them for the
analogous reason we insist on high-level programrming languages rather than assembly
codes. Further work is being done to provide new facilities to alleviate other user
burdens.

EXTENSIBLE VERIFICATION CONDITION GENERATOR

The only component of a program verification system which is entirely new to
computer technology is the "verification condition generator”--that portion of the system
which determines what "theorems” must be proved in order to establish that a program
does indeed have the specified properties. The XIVUS system is intended to be a tool for
verification of programs written in several different languages. At the same time,
research is under way into the best way to formulate and describe the rules for
generating verification conditions for constructs in each of the languages.

The current verification condition generator is inadequate for these purposes in that
it deals with only one language (a Pascal subset), and modification of it to incorporate
better formulations of verification conditions is quite dif'icult. These and several
additional considerations led to the design and implementation of a new verification
condition generator which:

;
PROGRAM VERIFICATION 5
® Can be used with cevaral different programming tanguages.
® Can de modified and extended easily,
® Will interface with an editor and parser to provide incremental verification 4

condition generation (reproving a program with minor changes should be easy),

£ ® Accepts an enriched “assertion language”™ usedg by the programmer to indicate the
intended properties of the progrira.

Both the new and old veriiication condition generators are based on the ideas ;
originated by King and Floyd, reformalized by Hoare, and developed by many others.
However, several new ideas are incorporated in the new one. An example best illustrates
: the techniques. An inventory program which removes the "current order quantity™ from
the "on hand quantity” should probably have the property that afterwards the "oa hand
quantity®” > 0. If there is an assignment statement in the program ONHAND « ONHAND
- CURRENTORDER, then a verification condition generator that "works backwards” will
insist that the user prove that (ONHAND - CURRENTORDER) > 0. This "substitution rule”
(right-hand side of the assignment for the left-hand side in the property to be proved) is
actually quite dependent on the forms of the data structures involved. For example,
ONHAND might actually be a file access parameterized by “part number.” For this
reason, the new verificat.on condition generator does not make the substitution above; it
merely indicates that one is to be made. The programming language designer must
provide the substitution rules to be used. In general, the new generator ncver makes a
decision that is either ianguage-dependent or more properly made by another component
of the verification system.

Alias

R L T S O SO W

To continue the example, the programmer might precede the above assignment with
a test: if CURRENTORDER > ONHAND then goto BACKORDER. A verification condition :
generator which "works forward” will conclude that after thic statement whatever was
true before the if still holds. In addition, ~ (CURRENTORDER > ONHAND) will hold. A
verification condition that could be generated is

R R e

~ (CURRENTORDER > ONHAND)
; implies .
(ONHAND - CURRENTORDER) > O i

{which is not provable since 1t is not in fact quite true--there is an inconsistency between
the given property and the program).

in general, for any path through a program the path can be "marked" and a
verification condition generated that the predicate at the mark obtained by working
forward imp...s that obtained by working backward, The new technology involved is to
save both forward and backward predicates with each program node, enabling incremental
verification and enhancing the options for verification condition generation: pure
forward, pure backward, or a mixture are all possible within the new system.

PROGRAM VERIFICATION 6

The nevi system allows for different languages by providing an extension
mechanism: ne* syntactic constructs may be defined for any particular programming
fanguage in terms of old ones. Verification conditions andfor Hoare axioms for the
construct are produced from the definition by the generator. The researcher in
verification technology or programming language design may then examine and modify
these rules, which are automatically invoked when the syntactic construct is used in a

program.

The basis for this technology--associating the predicates with the nod2s--was
developed in part by Gerhart [Gerhart75). Although the technology here is innovative,
the existence of the tool is mocr= important. Future extensions to the verification
condition generator include enriching the syntactic constructs allowed (to parallel
constructs), enriching the semantics which can be conveyed to the generator,
encapsulating the substitution rules in a language-independent manner, and linking the

generator into the XiVUS system,

NOTE: The inconsistency can be removed by changing the given property to "on
hand quantity 2 0."

ALGEBRAIC APPROACH TO DATA ABSTRACTIONS

In the algebiaic approach to data abstractions, an abstract data type 1s defired o
be a set of operations on a set of objects and a set of equations relating the operations.
Regarded as axioms, the equations serve as a representation-independent specification,
on which applications of the data type can be based and against which implementations
can be compared. An implementation of a data tyne consists of a representation, which
indicates how the abstract objects are to be represented in terms of some other data
type(s), and set of programs for the operations expressed in terms of the representation.
A correct implementation is one which satisfies the axioms of the specification.

One of the key ideas of the approach taken in [Guttag7€a) is to express both the
axioms of the specification and the programs of an implementation of a data type as
rewrite rules. With a few relatively minor restrictions on their form, these rules can
be compiled or interpreted by a relatively simple pattern-match compiler or interpreter.
Such pattern-matching systems already exist in symbolic mathematical systems such as
Reduce, Scratchpad, and Macsyma, and extensive use has been made of the Reduce
pattern-match interpreter in the work reported in [Guttag76a] and [Guttag76b].

Expressing both axioms and programs as rewrite rules suggests a duality between
specifications 2.1d implementations that has important consequences for software design,
testing, and verification. In design of data types, the duality suggests that the task of
initially axiomatizing a data type can be approathed as a programming task, using
expressions (operator-operand tree structures) as a representation. Using this
approach, it has been relatively easy {6 axiomatize tamiliar data types such as stacks,
queues, brnary trees, strings, sets, iists, graphs, and files [Guttag76b], as well as newly
invented lypes such as "message exchange.”

T TR P AT : PR T R TIy TR AT . 2
RTINS PP S DIy T T e S A L atielier . o o7 R T e :»:n‘w;r.,:qc.wg
haeed

=

~.
o -

At b anm ALY 32 sty

TR T R e,

TRV PO, S T TSI R T =z B — i meys — —
TP SR 72 dloas At R e e e e T e R e T T ERETRRST T T -

PROGRAM VERIFICATION 7

Since the axioms of a data type can be compiled into running programs, this
implementation can be used for initial testing with actual or symbolic data, perm'":ing the
designer to test to a limited extent whether his specification captures the properties
intended. One can also test high-level algorithms which are programmed in terms of the
data type before fixing upon an actual implementation of the data type. Thus, a true
top-down design methodology can be achieved [Guttag7:5al

Perhaps the most important consequences of the axiom/program duality are in
verification. By using both axioms and programs as rewrite rules in proofs, the proofs
become in targe part very straightforward and computational in nature. In this respect
the proof method is very similar to some of the methods of [Boyer75] for verifying Lisp
programs. Combinatiorn of the axiomatic approach to data types and hierarchical
development of software results in a very important advantage in verification, namely,
factoring proofs into the same hierarchical structure as in the programs [Hoare72). This
“levels of abstraction” approach becomes particularly attractive with algebraic axioms
because of the possibility of constructing axiom sets which are in an important sense
complete [Guttag75).

4 v e e

An Example

The characteristics of algebraic axiom specifications and their use in verification are
nicely illustrated by the example of a symbol table data abstraciion and its implementation
by a stack of hash tables. This example, first introduced in [Guttag?5), provides a
collection of operations for maintaining a symbol table, such as might be used in a compiler
for a block structured language. The informal specifications for these operations include:
(1) upon block entry one can redeclare previously used symbols (former attributes become
inaccessible unti! exit from the block); and (2) upon exit from a block, attributes declared in
the block become inaccessible. The formal specification with algebraic axioms defines six
operations on symbol tables with nine equations which relate cperations to each other,
e.g., LEAVEBLOCK(ENTERBLOCK(symtab)) = symtab, The axioms define the behavior of the
operations precisely, vet do not prescribe or preclude any particular implementation. The
operations in an impiementation are programmed in terms of operations of other data
abstractions, for which there are axiomatic specifications which can be used in carrying
out the verification that the symbol table axioms are satisfied. The symbol table
operations can, for example, be implemented by a Stack ot Mappings, the Stack being
implemented by an array/index pair and a Mapping by a particular kind of hash tabie (an
array containing lists of ioentifier/attribute pairs). The verification of the symboi table
axioms then involves use of a set of axioms for Stack operations, e.g., POP(PUSH(sti,item)) E
= stk, and a se! of axioms for Mappings, e.g., 7

]

i e A o

EVALMAP(DEF MAP{map,id,attr)id1) =
if id=id1l then attr else EVALMAP(map,idl). 3

(The form of this axiom, with the conditional expression and recursive occurrence of
EVALMAP on the right-hand side, is typical of the form used in algebraic axiom
specifications.) The particular implementations chosen for Stacks and Mappings are
verified in the same way, using basic sets of axioms for arrays and lists. it is important to

v A - ———— oo

LR RN LT = LT RLESLSOY (PRS- T X €IS

ISR

O

R

S R PR T RTINSO,

!
!
|
|

PROGRAM VERIFICATION 8

note that the verification of ihe top level of the symbol table impiementation does not
require knowledge of the particular implementations of },',-‘dacks or Mappings, only their
axiomatic specifications. Thus the proof of the entire impfamentation factors nicely into

levals,

Sen.i-Qutomatic Verification of Data Type Implementations

To carry out the verification of data {ype implementations using the algebraic
approach, a prototype set of facilities has been added to the XiVUS system. Using these
tacilities, the complete implementation of the symbol table data type using a stack of hazh
{ables has in fact been verified. As an example of the proof process, consider the
verification of the top ievel implementaticn by a Stack of Mappings. The first step is to
direct the system to adoot the programs of data type symbol tsble and the axioms of data
types Stack and Mapping. These programs and axioms would all be in the form of rewrite
rules which the user had just entered or had read in from fites. The command for
"adopting™ 5 sei ¢ rules is separated from the act of reading them in so that several sets
of rules for an operator can coexist within the system. Assuming tha! the symbol table
axioms have also been input to the system, the user than directs the system to generate
the verification conditions for the data type. These would consist of the symbol tabie
axioms and the "equality axiors™ for the symbol table equality operator, all intei preted in

terms of the representation.

The user can then attempt to prove each of the verification conditions using CEVAL,
a special “conditional evaluator” whick has been developed primarily for this purpose
[AR75]), [Guttag76a), or the standard simplifier/theorem prover of the system. In these
proofs the rewrite rules from the Symbol Table programs and Stack and Mapping axioms
are used automatically, without further direction from the user. fn some cases, completion
of a proof requires one or more assumptions to be made about the representation or the
Stack or Mapping data types. Initially these assumptions are input by the user and used
as needed without justification. To complete the verification of the implementation, it is
necessary to prove these assumptions, or a stronger set of assumptions, as theorems
(about the symbol table data type implementation or abou! the Stack or tapping data
types). The verification conditions sufficient to establish these theorems are constructed
using the domain/range specifications of the data types, in accordance with the principle
of induction on the number of applications of operations of the data type [Hoare72].

Work is now in progress on extensions to the basic methodoiogy of the algebraic
axiom approach to permit operations with side affects and to incorporate error handling
systematically. These extensions will contribute toward integrating the data abstraction
components of the XIVUS system with the existing Pascal verification components and
future components for verification of programs in other languages.

TR,
¥ 2 rWWWW““___W S
h CT AR R T TR AR s
3‘(GBI N T = ;V?«_»,?,,‘m?ﬁv:‘,{m
¢ i

N
A

i

Sl pt e o3

FENTIAE AR A e S L o A s A T e,

¥
L.x;»awr:aﬁm.m&

by) 5 R SLATLAG R T 3
P VYV T TNy A% T T XA ST e g s s e T
g 52 = r Anne ey - s v
™ ra T v

TR ISR ERGAT,
o
- T
H
ke
s,

E

B

Lunk adaals,

PROGRAM VERIFICATION 9

THE IMPACT OF VERIFICATION ON LANGUACE GESICN

s oy

In addition to verifying existing programs, written mainiy in Pascal, we have been
deeply involved tnis year in the design of two new programming languages, Euclid
{Lampson76] and Alphard [Wulf76, Shaw76b] Eoth of the ianguasge designs have as one
of their important goals veritiability of the resulting programs. Naturally, additional goais
and numerous other concerns are exerting major iniluences on these languages.
Nevertheless, it has been both surprising and extremely pleasing to observe the degiee to
wiich these concerns have reinforced each other. We deem it quite appropriate to
! provide a short glimpse into the interactions, starting with Euclid.

The Euclid language, drawing heavily on Pasca! and deliberately restricted to current
knowledge of programming languages and compilers, is intended for the expression of
system programs which are to be verified. Both the language and its compiler are given
§ part of the task of producing a correct program and of verifying its correctness. For
! example, although global variables are permitted, they must be explicitly listed when used i
‘ in a procedure or a record. This explicit listing means that no readsr of a program need .
do computing or complex searching to determine the global variables. One class of
readers in particuiar, human or mechanical verifiers, has thic information readily available
for use. Furthermore, the language is able to guarantee that two identifiers in the same
scope can never refer to the same variable, ie., there is no aliasing. All of this by i
deliberate design meshes well with a new, easily explained proof rule for verifying
procedure definitions and calls. The proof rule, developed for Euclid from several existing
proof iules, captures exactly the full Euclid procedure definition and call mechanism and :
2lso removes restrictions and known problems with other proof rules. In a very real ;
sense, the Euclid design is one of adding restrictions and the enforcing mechanisms to]
meet a desired level of understandability and verification capability. :

R 'E"\“’w NIRRT %
M el ARG E LN o L i B A o R ——

The use and verification of pointers in Euclid is made easier than in other languages
by allowing each dynamic variable to be assigned to a language construct, the collection,
and guaranteeing that two pointars into different collections can never refer to the same
variable. Thus assertions need not be invented and verified to obtain thic guarantee;
instead it is all part of the language.

When possible, the abovs guarantees are provided by extensive compile-time
checks. If the compiler is unable to complete a check, it generates legality assertions for '
the verifier to establish. Verifization concepts are thereby used to complement other
mechanisms. :

The Alphard languoge is a new language design rather than one starting from an
existing language. The effort focuses simultaneously on issues of programming structure
(methodology) and verification. The abstraction mechanism of Alphard, the form, ’
encapsulates a set of related function defimitions and associated data descriptions, allowing
@ programmer to reveal the behavior of an abstraction to other users while hiding
information and protecting details of the concrete implementation.

This explicit distinction between the abstract behavior of a data abstraction and the
concrete program that happens to implement that behavior provides an ideal setting in

¢
!
j
i
‘
i
{

TN T T T IVATRAT @ 1T T IS Wt

PROGRAM VERIFICATION 10

which to apply Hoare's techmiques for proving the correctness of data representations
[Hoare72] In the Alphard adaptation one shows that the concreste representation is
adequate to represent the abstract objects, that it is initialized properly, and that each
operator provided on the abstract objects both preserves the integrity of the
representation and does what it is claimed to do (in terms of both the abstract behavior
and the concrete procedure that actually implements the operator).

The verification technigue and the methodology decisions both require groviding
specifications of the abstract objects and the related operaticns. They also need
conditions describing the concrete objects and operations, invariants holding over all
operations, and a representation function giving the relation between concrete and
abstract objects. All of this information, made an integral part of a form definition, was
originally inciuded for verification reasons. Its presence, however, has directed attention
toward things which, on methodological grounds, ought to be of concern. The verification
technique exposed the need for certain language features, which at best were viewed as
conveniences and at worst would have been missed completely on the basis of
methodological or language considerations alone.

Methodology concerns have also benefited verification. The entire form concept,
for example, was introduced for methodological reasons. It is this factorization and
isclation, however, which appears to make either hand or mechanica! verification feasible.
Similarly the notion of generators, which permits hiding certain details of iteration, was
introduced on methodological grounds, but is also simplfying the verification of many
loops. Loop control using generators is implicit rather than explicit, and therefore a single
verification of that loop control suffices for all of its invocations.

An important part of language design 15 knowing what should be feft out. During
the Alphard design, constructs were repeatedly proposed which ~thes gave difficulty in ;
formulating the needed proof rules or which looked suspect on methodological grounds. ;
Usually such a problem signalled an urforeseen problem in the other domain. For
example, an early version of the iteration statement was much more elaborate than the
one currently adopted. Nevertneless, it seemed plausible on methodological grounds. its
verification, however, was a horror tc behold. Subsequently it became apparent that the
complexity of its verification was symptomatic of a difficulty which any programmer would
have in attempting to understand the statement or its use.

Numerous example forms, and programs using these forms, have been designed and
verified [Wulf76, Shaw76b, London76, Shaw76a). The proofs are modular, reflecting the
structure of the programs. In addition, the lengths of the proofs are within reasonable
limits and indeed quite encouraging. Most importantly, when modifications have been
made to a program, corresponding modifications needed in the proof have been nearly
always easy to identify and to complete, without the need to redo the entire proof. If the
implementaticn of an abstraction 1s changed, but not the specifications, then all programs
using the abstraciion and all verifications of those uses are also unchanged.

Even if we never verify another program (and no one even remotely believes that
to be the case), already the impact of verification on language design and the expression
of quality programs s significant and worthwhile. In fact, one of our colleagues,

k.«u:m S AR e i I M 2 e e AR

Arinnsim o

PROGRAM VERIFICATION i1

responding to an early revision of one of these ianguages, noted that it is “thrilling to see
verification finally interacting with language design.”

REFERENCES

[Boyar75]) Boyer, R.-S.,, and J S. Moore, "Proving Theorems about LISP Functions,”
J. ACM, Vol. 22, No. 1, January 1975, pp. 129-144.

[Gerhart75] Gerhart, S. L, “Correctness-Preserving Program Transformations,”
Conference Record of the Second ACM Sympczium on Principles of
Programming Languages, 1975, pp. 54-66.

[Goidberg73] Goldberg, J. (ed.), Proceedings of a Symposium on the High Cost of
Software, Monterey, California, September 1973. Published by Stanford Research
Institute.

(Guttag75] Guttag, J. V., The Specification and Application to Programming of Abstract
Data Types, PhD. thesis, University of Toronto, Department of Computer Science,
Computer Systems Research Group Technical Report CSRG-59, 1975.

(Guttag76a] Guttag, J. V., £. Horowitz, and D. R. Musser, Abstract Data Typres and
Software Validation, LSC/Information Sciences Institute, 1976.

[Guttag76b] Guttag, J. V., E. Horowitz, and D. R. Musser, The Design of Data
Structure Specifications, USC/information Sciences Institute, 1976,

[Hoare72] Hcare, C.AR, “"Proof of Correctness of Data Representations,” Acta
Informatica, Vol. 1, No, 4, 1972, pp. 271-281.

[Lampson76] Lampson, B. W, J. J. Horning, R. L. London, J. G. Mitchell, and
G. J. Popek, Euclid Report (draft), 1976.

(London76] London, R. L, M. Shaw, and W. A, Wulf, Abstraction and Verification in
Alphard: A Symbol Table Example, Carnegie-Mellon University and
USC/Information Sciences institutas, 1976,

[AR75] A Research Program in Computer Technology: Annual Technical Report, May
1974 - June 1975, USC/Information Sciences institute, ISI/SR-75-3, September 1975.

[Shaw76a] Shaw, M, Abstraction and Verification in Alphard: Design and Verification of
a Tree Handler, Carnegie-Mellon University, 1976.

A e R L T U - e

Za L ar . o S anld e ratad AV 0 LA AL G R Te T wi NUF v

o Fr T A,

P m;ﬂd

PROGRAM VERIFICATION 12

[Shaw76b] Shaw, M, W. A, Wulf, and R. L. London, Abstraction and Verification in
Alphard: Iteration and Generators, Carnegie-Mellon University and
USC/information Sciences Institute, 1976.

[Wulf76] Wulf, W. A, R L. London, and M. Shaw, Abstraction and Verification in
Alphard: Introduction to Language and Methodology, Carnegie~Mellon University
and USC/Information Sciences Institute, 1976.

[Yonke76] Yonke, M. D., The XIVWUS Environment, XIVUS Working Paper No. 1,
USC/information Sciences Institute, April 1976.

:
)
3
b
4
L
3

s

S AR b Y Db

T)

]
Lﬂw‘x‘: PROEPCT N

13
2.
PROGRAMMING RESEARCH INSTRUMENT
Research Staff: Research Assistant: Support Staff:
Louis Gallenson Ben Britt Rennie Simpson

Alvi: Cooperband
Ronald Currier
Joel Goldberg
Raymond L. Mason

INTRODUCTION

PRIM is an interactive microprogrammable environment used for creating emulators
of existing cr newly specified computers with major emphasis on providing programming
debugging too's; it is available via remots terminais through the ARPANET. PRIM provides
editors, compilers, and debuggers for creating emulators as well as an environment for
providing target systems with debuggers and configurors that can be operated by the
user in the familiar language of the original system. The emulated machine generally
provides better user debugging facilities and greater flexibility in system configuration
than the original machine, while producing bit-to-bit compatible results on all levels of
execution. PRIM is an atiempt to generalize a solution to the problem of software
development by means of emulation tools; it is a unique and powerful facility for improving
software development within the DoD user community.

The goals of the PRIM project are to facilitate more efficient programming by
providing and demonstrating integrated emulation-based tools that can give the user the
ability to create, debug, and execute programs for target machines in an interactive
(time-shared) environment richer in necessary user facilities than the original. These
tools are integrated into the National Software Works (NSW) system (see Section 7),
r-king them available on the ARPANET. PRIM is therefore a service facility, providing
unique tools to NSW programmers, as well as an experimental computer environment for
the researcher. The major implementations are the PRIM environment, a tool for emulator
tool builders, and two sample emulations, a UYK-20 tool and a U1050 tool.

The use of emulations (i.e., simulations) of unavailable computer systems as an aid in
programming large systems is certainly not novel. The uniqueness of PRIM is to provide
an integrated set of user tools, available via remote terminals, utilizing a well supported
general-purpose multiaccessed computer system (TENEX) and near real-time emulations,
rich in debugging aids, for software development. Like NSW, the major aim of the PRIM
project is to permit the military community easy access to the most recent computer

LR, b TR N s

PP TS TR O LTI R SR AN, AT A Y R

Spuiaiiat sy

i&khmﬂ.:ﬂ'}"' LS PRI AT

.

.

3

| ._
RLELT R 3

S5 T RER S i S

PROGRAMMING RESEARCH INSTRUMENT 14

technology, allowing the use of an existing operating systerm, editors, comgilers, and other
programs for creating and debugging new software. In addition, PRIM is demonstrating the
ease of introducing some types of new tools into NSW by emulating the computer system
rather than implementing hardware and software compatible with the protocols of tha NSW
operating system and the ARPANET.

The major project effort for this reporting period is the design and implementation
of a PRIM system tailored to the needs of military programmer while enhancing the
emulator-writing capabilities for additional tools operable within the PRIM facility. This
new effort utilizes the PRIM facility completed in 1975. (A detailed description is found in
the PRIM User’s Manual and need not be repeated here.) The tasks being coinpleted for
this reporting period are as follows:

New TENEX MLP-900 Driver
PRIM Exac

PRIM Debugger

PRIM Tool

UYK-20 Tool

U1050 Tool

THE PRIM FACILITY

The PRIM system was developed at IS! as a subsystem of TENEX. PRIM consists of
an MLP-900 microprogrammable processor and appropriate software to drive the
MLP-900, to support MLP-900 microprogramming, and to provide an environment in which
users create, manipulate, and interact with their emulators and/or emulated systems.

Hardware

PRIM’s hardware system is based on two processors: the shared use of a Digital
Equipment Corporation’s PDP-10 with other network users and the STANDARD Computer
Corporation’s MLP-900 prototype processor. The PDP-10 and MLP-900 share memory as
dual processors; the MLP-900 is also a device on the PDP-10 1/O bus. The PDP-10,
connected to the ARPANET, runs under TENEX with a paged virtual memory. Its pracessor
contains 256K words of 36-bit memory. The 1/O uperations performed by TENEX include
file, terminal, and network handling, swapping, and all other accesses to peripheral devices.

The MLP-900 is a fast, powerful vertical-word microprogrammed computer that has
been tailored to interface the TENEX system. 't contains 4K 36-bit words of control
memory, 80-nanosecond cycle time, and runs asynchronously with a 4 MHz clock. A major
modification of the MLP-300 has been the introduction of a supervisor state which allows

Bad ANy e 8 S Srens co

N s ————
JU RN P

Y
T .u.u_mgsom

P

Gt Ut aa b . A1) 37 7 14 =

PROGRAMMING RESEARCH INSTRUMENT 15

the processor to be shared with full protection between users. Prior to this uroject, little
had been done toward making the multitude of available microprogrammed processors
potentiaily sharable resources. This initial experiment goes a long way toward making
microprogrammed processors widely and inexpensively available. The hardware
environment was completed in 1974.

Software

The principal items of PRIM software are the General Purpose Microprogramming
Language (GPM) compiler, the MLP-900 microprogram supervisor (microvisor) and the
MLP-EXEC. The remaining software -- TENEX MLP-900 Driver, PRIM Exec and Debugger
(PRIM Tool), the UYK-20 emulator, and the U1050 emulator -- was implemented during this
reporting period.

GPM and the GPM Compiler. GPM is a high-level machine-oriented language,
designed explicitly for writing programs for the MLP-900. As a high-level language, GPM
offers a block structure and statement syntax similar to PL/1 or ALGOL. The compiler is
capable of producing multi-instruction code per statement as well as statements producing
exactly one MLP-900 instruction per statement. The GPM compiler was essentially
comple'ed in early 1974; for a more detailed account of its development the reader should
corsult the PRIM User's Manual.

MLP-900 Microvisor. The MLP-900 microprogram supervisor (microvisor) is a small,
fully protected resident system that controls the MLP-300 and its communication with the
PDP-10. It loads and unloads the user’s MLP-900 context upon command from the
PDP-10, supports paging of the user target program, protects main memory and the rest
of the PDP-10 system from emulator errors, and provides the emulator with a few other
services. The microvisor interacts only with the user microcode and the TENEX MLP
driver

The TENEX MLP-900 Driver. Access to the MLP-900 from a TENEX process is
accomplished via the MLP driver in TENEX. The driver is responsible for initializing the
MLP-500 microcode, controlling and swapping users, and passing along all the 1/0 requosts.
The driver is an extension of the microvisor; all communication with the MLP-900 goes
through the driver, while communication with the driver occurs througii the normal 1/0
JSYS’s,

To improve the security and efficiency of operation, the current version of the
driver has been incorporated into the TENEX moniter. The new TENEX MLP-900 driver
will appear functionally the same to PRIM users as the original driver (written as a user
program) with improvements in responding to page faults, swapping, and I/O requests.
The MLP-900 is an 1/O device to TENEX and uses existing system calls for communication.
The security of the system was improved by denying the PRIM users the ability to write

L icle S el |

£ daanay

SN

FL I RPN T Y- SISO N

e i WY S a” Braba

3 I SR IR RN T L TR TR T TR UAT T 7T VA ';‘?{WWZ"' TaL ST LRI T KR

PROGRAMMING RESEARCH INSTRUMENT 16

and i0ad their own mic-avisor. This capabiiity is restricted to maintenance mode and only
used by [SI personnel.

PRIM Exec. The PRIM Exec has replaced MLP-EXEC for the emulator user.
(MLP-EXEC, described in the RIM Urar’s Manual, served as the vehicle for creating and
checking out MLP emulations prior to the development of the PRIM Exec and is replaced by
the PRIM Exec.) The PRIM Exec provides the environment in TENEX needed to support each
of the PRIM MLP-900 emulators, together with a command language allowing the user of a

particular (emulated) computer to access that environment with the aiready familiar
vocabulary of that computer.

SEag e dar cna v gane pRELL RSSO PY

Sl L

oy

The emulator support consists of the module responsible for controlling (emulated)
execution, plus a server responsible for satisfying the emulator’s /0 requests. This |/O
server offers the emulator a full range of I/O operations, including “magnetic tape” and
"disk” operations (actually performed on structured TENEX disk files).

LI

WL T 13

Lk,

A command language interpreter in the PRIM Exac provides a uniform terminai !
interface modelled after the TENEX Exec, but with commands oriented toward the
needs--and vocabulary--of the programmer familiar primarily with the computer being
emulated; additional facilities are providsd the emulator-writer for the development and
checkout of a new emulator for the PRIM system. (The tailoring of the PRIM Exec, and also
the PRIM debugger, tc the details of a particular emulated machine, including its

terminology, is accomplished through a set of machine-specific tables that accompany each
emulator.)

LN IONY e E RN wh i 4

e

I

= L et N

The majority of the commands concern the building (and interrogating) of the
emulated machine’s environment, e.g., installing devices on the machine, mounting TENEX
files on those devices, and modifying the size of memory. In addition, there are commands
that allow a complete checkpoint and subsequent restoration of the user’s state and the
generation of a transcript of all or part of a PRIM session.,

'j PRIM Debugger. The [RIM debugger is a table-driven interactive symbolic
i debugger that permits a user of the PRIM system to debug target-machine programs in
terms of symbols defined for the target machine, using the data representation and
instruction formats of that machine. The debugger also provides symbolic access to the
MLP context; it uses a command language with feedback and help available if needed.

R ¥ S PATIT B 2t RS AN e I L

Some of the abilities provided by the FRIM Debugger are

1. To evaluate expressions of arbitrary complexity using the target
machine’s arithmetic and recognizing the target machine’s symbols,

VPRI 2P IRV S Y ¥ 1%

meebtm

s AN

2. To display and modify the contents of lists and ranges of target-machine
location, including some control panei functions.

PR TPY TN g a5 N0 978 SUE IS

.

b B Vb

TR ~3
T N R T T R T R T T T I oy —eme e
G S

T A L
B e D

PROGRAMMING RESEARCH INSTRUMENT 17

3. To set and :lear any number of read, write, and execute program breaks
(or any combination thereof) whenever in the target machine they are
appropriate (breakpoints are marked in metabits in target memory).

N R PR 1o

peres

4. To display 8 history of the most recent target program jumps and transfer
! control to designated addresses.

input and

t 8. To assemble symbolic target machine instructions on
disassemble them on output, including symbolic expressions as addresses*

The tables that supply machinc-specific information to the debugger are supplied by
the emulator developer. Among the information contained are

[RS

1. Descriptions of the properties of various target-machine and MLP address

spaces.
E

2. Symbol! tables for all target-machine symbols and appropriate emulator

symbols,

3. An instruction format description, including symbolic op codes.

4, Routines io convert from the internal data representation of the debugger
to the data representation of the target machine and vice versa.

A,

5. Routines to perform arithmetic and logical operations according to the
conventions of the target machine.

RN

AR Lo e g,

DESCRIPTION OF PRIM TOOL

L PN W

As a tool, PRIM is the hardware and software mentioned above, plus a new
user’s manual directed towards future emulator implementors; the latter is the orly
component lacking (completion is scheduled for FY77). In general, we are striving for a
complete, exact emulation of the target machine, including rot just instructions and
registers, but also clocks, interrupts, machine states, memory protection and relocation,
and nearly-real if0. Complete instruction sets, functionally identical to the emulated CPU,
are required to produce bit-compatible results in the working registers. The actual
implementation of machine instructions is transparent to the user; the emulation need be
"correct” oniy at those windows in the emulated cycle where interrupts may logicaily

Lt for e das s man

occur.

* Defined by target machine tables Scheduled for completion by October 1978,

et

W ST

:

E: ——
%
.44

PROGRAMMING RESEARCH INSTRUMENT 18

Also, we are striving for a better target system for debugging new programs even
at the sxpense of slower execution time. To achieve this goal, PRIM emulators are limited
to 32-bit computers, where thr extra bits are used as meta-bits for the conditional breaks.
Emu.ated timing information is proviced for instruction executors as memory references
and I/0. Jump history queues are provided for several of the most recent target system
jumps. A number of parameters are provided to allow users to easily configure and save
individual computer systems (I/O devices, memory size, speed of CPU, etc.). The major
attributes for PRIM-based toois is in its flexibility and in that the debugging environment is
external to the target machined dozs not interfere or change the run-time properties of
the target programs.

AN/UYK-20 EMULATOR

We have completed a 'RIM-based emulation of the ANJUYK-20 which provides a
complete and accurate ANJUYK-20 processor, as detailed below; included in the emulation
are CPU instruction execution, channel instruction execution and data transfer, clocks,
interrupts, control panel switches, and an assortment of asynchronous I/O devices.

Instruction Execution

The complete basic instruction set is implemented; the optional instructions
(MathPack) are not included in the initial release but will be available in FY77. Where the
AN/UYK-20 specification states a restriction on the use of an instruction, but does not
specify the consequences of violating that restriction (e.g., requiring even registers in
"double” instructions), the emulator halts and reports a program anomaly when such a
violation occurs. Indirect addressing under the control of Status Register 2 and relat®
addressing via page registers are inciuded.

Memory

Both main memory and NDRO are implemented. Main memory size may be altered in
8K increments; the available memory is assumed to be contiguously addressable from zero.

The memory is a single-port memory {but adding DMA as part of a device requiring it is
straightforward).

10C EXECUTION

1/0 Controller (IOC) command and chaining execution are implemented, together with
byte, word, and double-wyord data and function transfers. All sixteen channels, and their
control memory, are available, All data transfers (between emulated channels and

Cau e R SRt G a5 - T

PRSI LINTR S 2T S0 LW AT A B

PR

Py ore s ey

FYVII S RN par o anr AP S N

e waraa

ko

ke
I
ke
o
f
1

PROGRAMMING RCSEARCH INSTRUMENT 19

emulated devices) are byte-paraliel, using the natural byte size of the device. Data (and
function) transfers in all cases are driven by the device, at the device's rate, ignoring any
programmed modulation rate.

This implementation is correct for parallel and NTDS channels. For asynchronous
communication channels, the only visible effect on programs is that the data transfers run
"correctly” regardless of the serial information provided to the channel. For ,,~chronous
communication channels, an additiona! problem arises when there is, in fact, a ,ure bit
stream; for such a device, the emulation must do bit-at-a-time transfers, using the serial
info to reassemble the "bytes"”.

Clocks and Timing

Both real-time and monitor clock registers are implemented, with a user-specifiable
modulation rate (the default is the internal rate, which is one millisecond). AN/UYK-20
time is counted in a 50-nanosecond internal timer; no relaiionship is specified between
real (MLP) time and AN/UYK-20 time. Emulated instruction timing (both CPU and IOC) is
counted according to the AN/UYK-20 specification.

Interrupts

The complete interrupt facility is implemented, and all interrupts (except power
fault) are generated when appropriate. Power fault (and any other interrupt) can be
forced by the user by setting the associated flag via the debugger.

Console Switches

Various control panel switches are implemented as cells which can be manipulated
by the user (using the debugger). Normal toggles are set by the user and sensed by the
emulator; return-to-neutral toggles are set by the user, then cleared by the emulator after
it has sensea the setting. The implemented switches are Bootstrap, Load/Stop, Program
Stop, and Clock Disable. There are a0 indicators as such; all the registers and state
information are accessible through the debugger.

170 Devices

All emulated I/O devices run asynchronously with respect to the AN/UYK-20
processor (CPU and I0C), scheduling themselves for MLP service in terms of the internal
(50-nanosecond) timer. Device timing is based upon a single parameter which expresses
the time required tor one basic operation, typically the interbyte time interval. Scheduling

[ER STy

St Vet Ak \aadde S ad oart o

- ERE WECRE A X TV YV Y T P ST

wi e v At benm

.--WJZX& R L T - e .
- * S EFTRT -m CRUMIEE 3o e A e et P Tl -
x > SR T R SRR S oy S T TUBTTE R e
Il ¥

: PROGRAMMING RESEARCH INSTRUMENT 20

for all operations is based upon fixed reistionships with the timing parameter. The
parameter for each device can be set by the user, with the default giving the actual device
speed.

Baaagsh g gt

TR

X

’ The initial complement ot devices, required by the Level il software, is as follows:

TR

® Univac 1532 1/0 console.

o Cipher Mark | magnetic tape system. Reads and writes emulated tape
files within the TENEX disk system; a utility for converting between real
magnetic tapes and these emulated tapes is available.

¢ Documation card reader. Capable of reading either TENZX ASCI! text files
or card binary files.

® Versatec matrix printer.

Channel and Device Configuration

Installation is done on a channel-by-channel basis. Each installed channel may have
any implemented device installed; the emulation system has no restrictions regarding
channel graups, and does not enforce any such restrictions. installing a device implicitly
specifies the type of chanrel; one may not mount a device on the wrong type of channe!.
Mounting is done on instalied devices by associating TENEX file(s) with the device. For
devices which are actually multidevice controllers, mounting is done separately on each
unit. In generai, a single TENEX file is mounted on each device; in the case of emuiated
terminals, however, separate input and output files are needed when disk files are to be
used. Translation of data, where applicable, is specified at this time. The speed (transfer
rate) of a device can be specified at any time; ihe default is the actual device speed.

Ul0so TOoOL

We have completed a PRIM-based emulation of the U1050 which provides a complete
and accurate processor as detailed below; included in the emulation are CPU instruction
execution, 1/0 instruction and data transfer, clocks, interrupts, control pane! switches, and
an assortment of asynchronous I/O devices.

Instruction Execution

The complete instruction set is implemented. As with the AN/UYK-20, where the
U1050 specification states a restriction on the use of an instruction but does not specify
the consequences of violating that restriction, the emulator halts and reports a program
anomaly when such a violation occurs.

WYL ST

TR T S Ry T TR I S S S RTINS T R ST - e TR Y e T LR R L . 20 - -

PROGRAMMING RESEARCH INSTRUMENT 21

Memory

Main memory size may be altered in 8K-byte increments; the available memory is
2ssumed to he contiguously addressable from zero.

Clocks and Timing

U1050 time is counted in a HG-nanosecond internal timer; no relationship is specified
between real (MLP) time and U1050 time. Emulated instruction and contrcller timing is
countad according to the U1050 specification.

Interrupts

The complete interrupt facility is implemented, and all interrupts (except internal
parity errors) are gencrated when appropriate. Any interrupt can be forced by the user
by setting the associated fiag via the dekbugger.

Console Switches

Various control panel switches arv implemented as cells chat can be manipulated via
the debugger. Normal toggles are set by the user and sensed by the emulator;
momentary switches or toggles are set by the user, then cleared by the emulator after it
has sensed the setting. The implemented switches are Clear, Start, Continue, Card-load,
Tape-load, Operator request, and three sense switches. There are no indicators as such,
since other control functions are available through the debugger.

170 Devices

All 1/0 devices are impiemented except for high-speed communications. All channels
(except 4 and 5) are available. All data transfers (between emulated channels and
emulated devices) are byte-parallel, using the natural byte size of the device. Data
transfers in all cases are driven by the device, at the device's rate.

All emulated devices run asynchronously with respect to the U1050 processor,
scheduling themselves for MLP service in terms of the internal (50-nanosecond) timer.
Device timing is either fixed in the emulation or is based upon a single parameter that
expresses the time required for one basic operation, typically the interbyte interval.
Scheduling for all operation is based on fixed relationships with tne timing parameter.
‘The parameter for each device can be set by the user, with the default giving the actual
device spaed,

PR S IOy

Sda i

2 3e? Tk kAN

e dr Aot A san

RSy

PROGRAMMING RESEARCH INSTRUMENT 22

The impiemented 1/O devices consist of a printer, cari reader, card punch,
low-speei communications (up to 15 units), mass storage {one disk unit), and one

read/write tape unit.

Device Configuration

installation s done on a channel-by-channel basis. As each UI050 channel is
committed to a particular type of device, care must be exercised that each device is
installed on its proper channel.

CONCLUSIONS

By October 1976 the PRIM project will have realized all its major goals: to provide a
rich microprogramming environment for computer scientists, provide programming tools
under NSW to the military community, and make the technology available to the DoD
community. (As mentioned above, the necessary documentation will be completed during
FY77.) The PRIM facility will remain at ISl and continue to support the efforts of NSW and
SOL in providing integrated ccriputer tools for programmers and system designers. PRI
personnel will continue to support these users by completing the PRIM environment
(adding configuror), completing the user documentation, providing user guidance, and
improving the capabilities of the existing togls. Two planned implementations are a dual
UYK-20 emulation and a controiier for reai-time inputs.

When these tools are completed, the PRIM project will have s:ccessfully completed
the PRIM tool and the UYi-20 and UL050 tools. We are optimistic about user acceptance
of these tools and the whole PRIM environment. The PRIM architecture (characterized by
the dual processors, one of which is multiaccessed, available via remote terminals, and
provides a well supported general-purpose programming environment rich in programming
tools and the other of which is a fast microprogrammable CPU) is the correct approach to
providing emulation-based programming tools. The military community has recently shown
interest in using emulation-based tools ic implement and develop large software systems,
The existence and general avalability of PRIM should provide incentives for the
development of additional PRIM-like systems for general use.

REFERENCE

Gallenson, Louis, etal., PRIM Use”’s Manual, USC/Information Sciences Institute,
ISI/TM-75-~1, April 1975,

AR T T PR

il s 0 £330 a2

N BT AOA A Y an

e e AL ALt AN prr # TABA LS L S8k B LN it ¥ 84

Sy T g ad

R
AR T30 G

SPECIFICATION ACQUISITION FROM EXPERTS

Research Staff: Support Staff:
Robsrt M. Balzer Nancy Dachior
Neil M. Goldman
David S. Wile

INTRODUCTION

Only modest gains in programring productivity have been produced in 25 years of
software research, but the groundwork has been laid for major advances through
rationalization and automated aids. This groundwork rests on two critical ideas: that
spacification must be separated from impiementation, and that the separation between
these two processes should be a formal operational abstract (i.e., very high level) program
rather than a nonoperational requirements specification. Structured programming
represents the first results of combining these ideas. It is a special case of a more
general two-phase process, called Abstract Programming, in which an informat and
imprecise specification is transformed into a formal abstract operational progra:., which is
then transformed into a concrete (ie., detailed low-level) program by optimization.
Abstract programming thus consists of a specification phase and en implementation
(optimization) phase which share a formal abstract operational program as their common
interface.

The concept of abstract programming is completed by adding the feedback loops
required by testing, maintenance, and tuning. In conventional programming, where no
abstract program exists, these feedback loops ali operate on the optimized concrete
program. On the other hand, in abstract programming, if an effective method can be
found for guaranteeing the validity of an implementation (that is, the functional equivalence
of the abstract and concrete programs), then the validation process can be shifted to the
specification phase to show equivalence between the user requirements and the abstract
program. Thus, validation could, and should, occur before any implementation.
Furthermore, if the implementation process could be made inexpsnsive through computer
aids, then maintenance could be performed by modifying the specification and
reimplementing it rather than directly modifying the optimized cuncrete program, as ic
current practice. The importance of such an advance can be recognized when one
realizes that optimization is the process of maximally spreading information (to remove
redundant processing), and that modification requires information localization. Thus, the
two processes are diametrically opposed; this fact explains much of the current probiem
with modifying and maintaining existing programs. The second major cause of this dilemma

I alin T erenalar i S b aL

R i 1L S 5 ARl
P A i A T o
bl By LR 2

a3t

24

E SPECIFICATION ACQUISITION FROM EXPERTS

is that optimization obscures clarity and thus makes it difficuit for maintainers even to

understand how the concrete program operates.

P LA g P TN o R L O
N Wl

that major advances in programming will hinge on the ability to
process with guaranteed valigity so that maintenance
fication phase on the abstract program (as shown in

it is therefore clear
provide an inexpensive optimization

%’ and validation can occur in the speci
E Figure 3.1) rather than in the implsmentation phase on the concrete program.
q
Formal 1
informal :$ Abstract :$ e s _~_ Concrete :
—> i . Optimization ;
Specification Design Operational ptimization | —e”? program :
Program ’
Tuning i
| Testing :
| Maintenance | 3
;
Figure 3.1 Abstract programming %
The key element of the whole abstract programming approach is the abstract !
operational program itself. Currently, considerable effort is directed toward designing
for writing such abstract programs; however, no matter how

appropriate languages
< "high-level” these languages becom
g demand unambiguous, complete, an
that make programming difficult and that make necessary
suitable formal specifications.

n form at a number of ’
el is the "functional

e, they are formal programming languages, and as such

d consistent specifications. It is just these demands
a tool to aid specifiers in buidirg

e aame e v e & e

pecified in writte

One such lev
how the system is supposed to oper
st-level design. These specifications are currently used by
tion of what to implement. Unfortunately, problems arise !
although generally understandable, are generally neither

nor consistent. The programmer is 1aft to his own ingenuity to
them himself or to obtain a clarification from the

Currently, all large softwara systems are S
levels of detail before implementat‘on begins.
cification,” which describes in natural language

ate

4 spe
and represents a fir
programmers as the descrip
because the specifications,
complete, unambiguous,
discover these problems and to fix

specifier.

SPECIFICATION ACQUISITION FROM EXPERTS 25

PROJECT GOALS

The Specification Acquisition project has therefore adopted as its goal the
develonment of a system that aids system specifiers in converting their informal
specifications into a precise operational abstract program. To produce such a system we
needed both an understanding of the structure and content of such informal specifications
and a theory of how they could be formalized. We therefore first undertook an extensive
survey of existing military functional specifications (as embodied in Military Standard-490
BS specifications). These natural language descriptions represent a first-leve! design of
the intended system. They apportion the required processing into modules and describe
the interfaces Letween the modules and the overall control structure. Because the
audience for thsse descriptions is other people (as opposed to computers), they employ
the full variety of detail suppression mechanisms found in natural language, including
omitted parameters to actions, anaphoric reference, implicit or omitted control structure,
terminology shifts, part/whole interchangeability, etc. (These mechanisms are more fully
described in the Appendix.) The reader of the specification is required to amolify the text
and dotermine for himself which details have been suppressed.

i Our study of these specifications and their detail suppression mechanisms led {0 our
; proposed theory of how people understand such specifications and fill in the suppressed
details. Our theory is simply that these specifications are understood not in a general
natural language context, but rather in the much more specific context that an operational
program is being specified. Understanding these specifications basically requires that the
correct interpretation of each statement is chosen from several possible interpretations of
the natural language statement. The key to our theory is that these choices are guided
by the statement’s use in the operational program. Fortunately, programs are highly
constrained objects (one reason it is so hard to construct them) and therefore act as
efiective filters of possible interpretations. In Artificial intelligence terms, program
understanding is a domain of strong semantic support.

T R g P)

Lot uonstt AnAN L i s 2 RS IRt Al

The SAFE system is based on this theory. It forms the individual statemants into a
‘ program schema and then at'empts to "run" the schema, Symbolic rather than actual data
is used as input so that general program behavior can be analyzed. At each step in this
X i “running” of the program a particular interpretation must be chosen for the current
statement before it can be executed. The chosen interpretation is accepted if and only if
it does not cause any violations of the rules of well-formedness of programs, which are of
three forms. First, the program must pass a set of static (syntactic) well-formedness rules
such as "parameters must be used in a routine” and "the type of an actual argument must
agree with the corresponding formal parameter tvpe.” Second, the program must pass a
set of dynamic (semantic) weli-formedness rules, such as (1) "if X is performed for the
purpose of Y then Y must use the results of X,” or (2) "the predicate of an IF statement
cannot be determinabie from the program itseif” (it it were, then its evaluation is

3
Ei
3
a
3
k
c ~ e R
L'u PRSP S ROY LI IP YR PTETICT MY S 1 RIS E SR PN £ P Siaaen ZalIRE,

& T R T e i N B L T B T prT e T = e o —- B
e T TR T TR R T L U T S RS T T X ey .

. SPECIFICATION ACQUISITION FROM EXPERTS 26

independent of the actual input and therefore not really a conditional as expected).
2 Finally, the program behavior cannct violate any constraints of the domain.

T B7

Whenever one of these rules is violated, the "run” is backed up to the last choice
point and a different choice is attempted (if no possibilities remain, then the previous
choice point is tried). This process is continued until either a successful “run” is obtained
or all possibilities have been exhausted. Interpretations are thus chosen and evaluated in
the context of how they are used in the run-time environment of the program. The
process of "running” a program with symbolic inputs, called meta-evaluation, has been
extensively developed by researchers interested in proving properties of programs. As
far as we know, this project represents the first use of meta-evalustion for program
urderstanding rather than program proof.

FT

CLOTTY,

Ehed

2 TARERIILNS 9o LT

PROCRESS AND ACCMPLISHMENTS

A major milestone was achieved when the SAFE system transformed the informal
functionai specification shown in Figure 3.2 into an operational program. The informality
of this specification is shown in Figure 3.3, which indicates some of the suppressed details,
terminology conflicts, and ambiguous constructs contained in this example. The formal
program produced as the precise specification of the input in Figure 3.2 is shown (in a
simplified publication syntax) in Figure 3.4.

This example was extracted from an actual Army functional specifications manual.
The original specification was much larger and more complex, but the simplified version 1
retains the essential character and style of the original. 1t should be noted from Figure ;
3.2 that the actual input is parenthesized (each noun-phrase and verb-phrase is
parenthesized) so that syntaclic parsing considerations can be avoided. Such
parenthesization does not, however, solve or mitigate the setantic interpretation issue
discussed above (nor those shown in Figure 3.3) which still remain for the system to §
resolve by meta-evaluation,

In an effort to determine how difficult it is to understand this particular informal
specification and convert it to an operational abstract program, we asked several staff
members to construct an abstract program corresponding to this specitication. We asked
them not to optimize the abstract program because our system is not concerned with
efficiency issues.

The problem was much more difficult than we suspected. The subjects averaged
eight hours to accomplish the task and each subject had either design or coding errors, or
both. Furthermore, the programs produced were approximately the same size as that
produced by the system. One interesting result of this test is that the system made one

¢
3
b
b4

Eaal R TRk d it N S A DA M e - RRE it - SUhC b S aiey £ S5 N ¥ v ST M M S ol S eedte. s

SPECIFICATION ACQUISITION FROM EXPERTS 27

error--also made by one of the subjects. The error was that cupies of the edited
message were distributed rather than copias of the original; it was caused by the fact that
the system didn't understand that distinctions betwesn original and current state are
frequently suppressed, and because its current analysis of the usage of produced resuits
is very simple. Both of these deficiencies are expected to be corrected in the next
version.

PLANS

Though the results using this example are very promising, and although we have
attempted to build a general system capable of handling a wide variety of specifications ;
from many different domains, it is extremely difficult to extrapolate from a single data ;
point. We therefore are planning to present several different and more complex examples 3
to the system during the next year.]

i i e et

* ((NESSACES ((RECEIVED) FROM (THE "AUYODIN-ASC™))) (ARE PROCESSED) FOR (RUTOMATIC DISTRIBUTION
ASSIGNNENT))

& ((THE MESSAGE) (IS OISTRIBUTED) TO (EACH ((RSSIGNED)) OFFICE))

» ((THE NUMBER OF (COPIES OF (R MESSAGE) ((DISTRIBUTSD) TO (AN OFFICE)))) (IS) (R FUNCTION OF (UHETHER :
((THE OFFICE) (IS ASSIGNED) FOR (("ACTION") OR ("INFORMATION")))))) 4

* ((THE RULES FOR ((EDITING) (MESSAGES))) (RRE} (: ((REPLACE) (ALL LINE-FEEDS) MITH (SPACES)) ((SAVE)
(ONLY (ALPHANURERIC CHARACTERS) AND (SPRCES))) ((ELIMINATE) (ALL REDUNDANT SPACES)))) a

*® (((TO EDIT) (THE TEXT PORTION OF (THE MESSAGE)?)) (IS) (NECESSARY))
(THEN (THE MESSAGE) (IS SEARCKED) FOR (ALL KEYS))

RN

* (HHEN ((R KEY) (IS LOCATED) IN (A MESSAGE)) ((PERFORM) (THE NCTION ((ASSOCIATED) MWITH (THAT TYPE OF
(KEY)))) D)

TYNe

* ((THE ACTION FOR (TYPE-8 KEYS)) (IS) {1 (IF ((ND OFFICE) (HRS BEEN ASSIGNED) TO (THE MESSRGE) FOR
("RCTION™)) ((THE “ACTION" OFFICE FROM (THE KEY)) (1S RSSIGNED) TU (THE MESSAGE) FOR ("ACTION"))) (IF
((THERE 15) ALREADY (AN "ACTION" OFFICE FOR (THE MESSAGE))) ((THE “RCTION® OFFICE FROM (THE KEY)) (IS
TRERTED) RS (AN "INFORMRTION" OFFICE))) (((LRBEL OFFSL (ALL "INFORMATIOK™ OFFICES FROH (THE KEY))) (ARE

ASSIGNED) TO (THE MESSRGE)) IF ((REF OFFS1 THEY) (HAVE (NOT) (ALRERDY) BEEN ASSIGNED) FOR (("ACTION®) OR
(“INFORMATION"))))) 3

I R e

* ((THE ACYION FOR (TYPE-1 KEYS)) (IS) (1 (IF ((THE KEY} {(IS) (THE FIRST TYPE-1 KEY ((FOUND) IN (THE
HESSAGE)))) THEN ((THE KEY) (IS USED) TO ((DETERMINE) (THE "ACTION* OFFICE)))) (OTHERMISE (THE KEY) (IS Z
USED) TO «(DETERMINE) (ONLY "INFORMATION" OFFICES))))) %

Figure 3.2 Actual input for message processing example

S
?
I
3
s
.
4
3
i
E
s, S v ot NI S B i ANt A e B 8

SPECIFICATION ACQUISITION FROM EXPERTS 28

bu SAFE then then distributed
ASSIGNYZHUTA.

i
=X
m
wn
w
2
(2]
m
(7]
x
m
«©
m
-
<
mn
o
-”
bl
(=}
=
-t
X
m
e o
<
—_
(=1
o
-
=

()
D
(724
Ky

-
=
m

to that message

4
—
X
m
=
m
w
v
D
[}
m
Laad
w
o
—
w
—
b
-
[~
[=4
-
m
(=
-t
o
m
n
[]
x

D

4
-t
X
m
=
c
4
w
m
x
[=]
-t
<
[=]
o
-t
m
v
(=]
-
o
=1
m
w
m
o
—
(%]
—
N
—
w
[=
—
fad]
o
-t
(=]
o)
=
[=3
-
-n
-
[m]
m
-—
w
o
-
[=
=
2
-
>
[oe]
-4
(=4
-y
x
m
—
T
m
k)
-
x
m
(=]
]
-
-
©
m

in text of message
RRE (1) REPLACE ALL LINE FEEOSAMITH SPACES (2) SAVE ONLY
from text

ALPHANUMERIC CHARACTERS AND\ SPACES AND VHEN (3) LININATE ALL REQUNDANT SPRCES,.

¢ IT IS NECESSARY TO(EOIT THE TEXT PORVION OF THE HESSAGE.)

text of the —
+ THEANESSAGE 1S THEN(SEARCHED)FOR ALL KEYS.
the text of
« WHEN R KEY IS LOCATED INyR KESSAGE, PERFORM(THE CTION ASSOCIATED WITH THAT TYPE NF YEY.)
,(""__ _——/j
« THE (RCTION FOR TYPE-8 KEVS)IS: IF NO RCTION OFFICE HAS GEEN ASSIGMED TO THE MESSAGE, THE
assigned to othervise
ACTION OFFICE FROMATHE KEY 15 ASSIGHED TO THI VESSAGE FOR ACTION. AIF THERE IS AuREADY AN
?

m

ACTION OFFICE FOR THE HESSAGE, THE ACTION OFFICE FRON THE KEY (IS TREATEC AS)AN INFCRAATION
for key or information

CFFICEA. ALL INFORMATION OFFICES FROM THE KEY ARE ASSIGNED TO THE NESSAGENIF THEY HAVE ROY
to the message
ALREADY BEEN ASSIGKED FOR ACTION R INFORMATION,.
5 THE ACTION FOR TYPE-1 KEYS iS: IF THE KEY IS THE FIRST TYPE-1 KEY FOUND IN THE PESSASE THEN
? of the message ?
THE XEY 15(USED_TO DETERMINE)THE ACTION OFFICE,. OTHERWISE THE KEY 1S(USED TO DETERNINE ONLY)
of the message

INFORMATION GFFICESA.

Figure 3.3 opecification deficiencies of message processing example
(by conventional programming standards)

T P I T~ T gy e~

(5~

ey

TVRGRE N FHANF NI A S e 30

ey e F T

SPECIFICATION ACQUISITION FROM EXPERTS 29

(HHINEVER (receive message FROM autodin-asc BY safe)
(edit text OF message)
(search text OF message FOR (CRERTE THE SET OF keys))
(distribute-process#! messags))
(distribute-process#l (message)
(FOR ALL offices WHICH ARE (assigned oftice TO message FOR ANYTHING)
(distribute-process#2 message office)))
(distribute-process#2 (message office)
FOR (functionf! (TRUTH-VALUE OF (a2ssigned office TO wmessags FOR action))
(TRUTH-VALUE OF (assigned office TO message FOR information)))
TINES (distribute R copy WHICH IS A copy OF message AND tocated AT satfe
FRON safe TO location OF office)))
{edit (toxt)
(FOR ALL line-feeds WHICH ARE IN text
(replace line-feed IN text BY (CREATE AN ORDERED SET OF spaces)))
(xeep THE (union (CRERTE THE SET OF aiphanumeric characters IN taxt)
(CRERTE THE SET OF spaces IN text))
FRON text)
(FUR ALL spaces WHICH ARE IN text AND redundant IN text
(remove space FRO™ text))
(NHENEVER (locate P key IN taxt OF message AT POSITION AKYTHING)
(CASE (type OF key)
(typs-8 (type-8-action message key))
(type-1 (type-l-action message ksy))))
(type-8-action (message key)
(IF (NOT (EXISTS action o¢fice FOR me.sage))
THEN (assign THE action office#l FOR key TO message FOR action}
ELSE
(treat action ofice#2 FOR key RS information officed2 FOR key
IN (IF (NOT (assigned office#2 TO message FOR action OR informetion))
THEN (assign offica#2 TC message FOR information))))
(FOR ALL office#3 WHICH ARE (assigned offices#3 TO key FOR information))
(IF (NOT (assigned otfice#3 TO message FOR action OR information)
THEN (assign office#3 TO message FOR information))))
(type-l~action (message key)
(IF xey = (key#l WHICH 15 (SEARCH HISTORY FOR FIRST
(locate typefl keyfl IN text OF message AT position ANYTHING)))
THEN (determine THE action office FOR message
BY (type-B-action message key))
ELSE (determine ONLY THE information office FOR message
BY (IF (EXISTS action office 7OR message)
THEN (treat action office?l FO xey RS information office#! FOR key
IN (IF (NOT (assigned officefl TO message FOR action GR information))
THEN (assign office#l TO messags FOR information))))
(FOR ALL office#2 WHICH ARE (assigned office#2 TO key FOR information)
(If (NOT (assigned office#2 TO messags FOR action OR information))
THEN (assign office#2 TO measags FOR information))))))

Figure 3.4 Program created by prototype system

Sk PRovL.Y

AJ
3
2
R I T T g U N P SPE P v

seake S, ad

SPECIFICATION ACQUISITION FROM EXPERTS 30

APPENDIX

W HAT NATURAL LANCUAGE CONSTRUCTS ARE IMPORTANT
FOR PROCRAM DESCRIPTIONS

Natural language program descriptions seem to depend upon a particular model of
the (relevant) world populated by objects of various types having ce; (ain attributes which
are relationships between themselves and other objects. This collection of objects and
their relationships can be classified as a model because the objects must obey certain
rules (both static and dynamic) that limit the allowed states the modei can adopt. These
rules are the “physics” of the model.

With such a model as a basis, a program description corresponds to rules for
forming sequences of actions that will guarantee that the model’s behavior (as constrained
by the physics) additionally meets some other criteria~--the goal of the process. The
behavior is specified either as the final state of the model or as the succession of states it
assumes. The sequence formation rules are the analog of control statements in
conventional programming languages.

Thus, as a first approximation, a language suitable for natural language program
descriptions must be capable of definirg types of objects, instances of these objects with
specific attributes and relationshizs with other instances, constraints on the allowable
states that the collection of objects can assume, actions which modify the objects and their
interrelationships, and rules for forming sequences of these actions to achieve some goal.
Such a language closely approximates the current notion of an abstract programming
language.

The natural language modei ciffers from the abstract program model in two
fundamenta! ways: Fir.* 'n the natural language model, it is assumed that any desired
information concerning the current or previous states of the model can be directly
retrieved from the model; thus all information is viewed as primary. Second, all the
cuonsequences of an action are not specified as part of the action’s description, but only
the portion directly relatea to the actions. The others can be derived from those
specified. These rules of information derivation are called inference rules, and they
permit the natural language model to ignore the distinction between primary and derived
information and to specity only the prilnary effects of an action. They also permit the
derivation of information to be decoupled from both how the information used in the
derivation was itself generated and how the desired information is used. They thus deal
«iith the consistency of the mcdel in any state rather than the movement bétween states.
The task of maintaining the consistency of the state is transferred to the system through
these inference rules. Thus the natural language model must embody inference rules and

Y

STV PP

oA b DL aVutdvie s,

AR RY Lo St ikt 4

SPECIFICATION ACQUISITION FROM EXPERTS 31

must use them to maintain the consistency of the medel state as it is changed by actions.
Using this natural langusge model as a basis, we can now discuss the three broad

categories--declarative, naming, cont-ol--of constructs which appear in natural language
program descriptions.

Declacative Information

Declarative information is used to help the transiator seiect the awupropriate
interpretation of procedural constructs. Most of this information (such as t:.pe, relation,
constraints, and inference rules) has siready been described above. The issues here are
that in natural language descriptions this information is mixed with the procedural
description rather than separated from it and the use of the information extends beyond
static characteristics to dynamic behavioral ones. Thus, constraints are often used to help
eliminate interpretations that will cause the constraint to be violated.

There is one additional type of declarative information, called expectations, not
already discussed. These are promises that certain things will occur or that the program
being described fits together in certain ways. For example [all the examples are drawn
from the program description in Figure 3.2]:

® "The message is processed for distribution” - This sets up the expectations

that processing precedes distribution and that the processing produces some
results used by distribution.

As with the cther declarative information, these expectations can be used to
eliminate possible interpre *tions which do not fulfill the expectations.

Naming Constructs

In programming languages variables are normally given unique names or--if names
are reused--precise scoping rules provide a unique interpretation. In natural language, on
the other hand, objects are almost never given names; instead, context in conjunction with
a naming construct provides a unique reference. Thus both a context mechanism and the
following variety of naming constructs must be provided.

A Descriptive. A set of associations is giver which uniquely selects a particular
object from those in the current context or the set of all objects of the
specified type. For example:

]

.

N

aazte neod ATwo g pof BLSO Y

DR P WA R R 4 X AN

AL AT,

I RVRT WP R A

g‘ucut»;l(:f.u}’.hbﬁv:m‘ﬂsﬁw_o’mm!m%ma\'ib- PIPTIRY SUP-XYEY e AR RLEEV ST PINN

e S—————

!
!
§
¢

SPECIFICATION ACQUISITION FROM EXPERTS 32

® "The office assigned to the key for action™ - If it is assumed that the
reference to “key” is unique and that only one office is assigned to that
key for action, then this descriptive reference is also unique.

Simple typed rcferences. Only the type of the desired object is specitied; the
resolution must be provided eithar by a unique instance of that type in the
context or by the operations performed on the object. For example:

® “The message is distributed” - Context is used to determine that the
received message is the desired one.

® “"Replace all line-feeds” - Using the line-feeds (i.e, replacing them by
spaces in the text of the message) requires that the referenced line-feeds
be in the text. Thus only line-feeds in the text satisfy this typed
reference,

Approximaie references. The stated reference doesn't specify the necessary
relations to determine th: desired object, which can be either explicit as in
the generalized prepositions below or hidden so that only a failure of the
referenced object to satisfy some usage criteria indicates the necessity to
reinterpret the reference as an appropriate reference to some closely related
object. Resolution of this type of reference requires both contexi and usage
analysis. Two broad subcategories are:

Cl. Generalized prepositions. When a strong association exists between
objects, a preposition may sometimes be used in place of the
association to relate the objects.

® "The action office from the key" - The word “from" indicates that
some unspecified relation associates office, action, and key. In this
example, this association is the office assigned to the key for action.
The reference is then treated as descriptive.

C2. Hidden. Reference is made to an object when a closely related one (in
this case a subpart) is desired.

® "The message is then searched” - Although "message” is specified,
only the text portion has the appropriate attributes to be searched;
thus it is the intended reference.

Missing operands. In many situatians operands te associations or actions are
completely omitted from the natural language program descriptions. Such

tma s i ad & LB

SPECIFICATION ACQUISITION FROM EXPERTS 33

omissions are possivle only when the context and usage constraints are
strong enough to determire the reference, or when the particular reference is
irrelevant or the entire class of possible referents is intended. In addition to
using such context and usage information, the omission must be recognized to
initiate these mechanisms; such recognition depends upon knowing what
operands are reqiired for each association and/or action used.

® “The message is distributed to each assigned office® - The “assign”
association requires three operands: an office, a {ype of assignment
(either action or information), and an object being assigned to (either
message or key). Only one of the three--office--is specified. Thus the
object being assigned to is omitted and context is used to determine that
the message shoulid be distributed only to those offices assigned to that
message. Similarly, context is used to determine that offices assigned for
either action or information (the only two possibilities) are intended for
distribution.

Control

As with naming, natural language program descriptions use seversl control
constructs which do not exist in programming languages and which permit a very different
organization for these descriptions. Instead of a whole composed of highly structured and
tightly connected parts, as in programming languages, they form a loose confederation of
unconnected fragments held together only by constructive efforts based on context and
usage.

This constructive effort is exactly that needed to transform the description into the
program control structure. It shouid not be surprising that the control structure has been
suppressed and dispersed in descriptions because these descriptions are intended
primarily for understanding, not execution. Program descriptions thus highlight the
processing for the normal case by presenting it first, followed by descriptions of any
exceptions and how these exceptions should be processed. They in turn are similarly
described, so that any exceptions to an exception will follow the description of that

i exception.

The structure, then, of natural language program descriptions is that a fragment (a E:
piece of the description with internal conventional control structure) is followed (not
necessarily immediately) by a set of exceptions that specify the application criteria and
the processing (as a fragment) for those cases which satisfy the criteria. This is exactly
opposite to the order found in programming languages, in which all the special cases
precede the normal case. Details are similarly suppressed in a fragment to promote

cenay L

IETSPESNIPY. ST L Ne TICS LY AT TS TS £ T

|
-

S RF S fdae e~ " —
TN R 43 19 Xk VA LT Sr S R T TP ? o mm gy § R

(AR et piiidt g

A ST A g M ey

RARRMG I A’ Qiconad 1447

SPECIFICATION ACQUISITION FROM EXPERTS 34

understarding, and the amplifications occur later in fragments which indicate what is being
amplitied and what the amplification is.

Constructing the program control structure for a program descriptiors thus invclves
integrating the fragmen's, which requires that the type of each fragment be identified as a
normal case, exception, or amplification specification. For each fragment of the latter two
types, the fragment being modified or amplified must be idertified (this is a naming
problem similar to those described above).

Amplification can be treated as substitutions for the named construct within the
amplified fragment. There a‘e, however, lwo problems with exceptions. The first is the
relative ordering of multiple exceptions to a fragment. Normaliy such ordering is not
explicitly stated and must be determined by the type of overlap between thei. applicable
cases and/or processing assumed in the modification. As part of this ordering problem, it
must also be determined (by a similar analysis) whether or not a case that satisfies the
criteria for an exception should then be tasted against the criteria of other exceptions
and/or processed by the nurmai case. The second problem with exceptions is that the
processing to be performed might not be directly specified, but rather given as a
modification of or a simiiarity to already specified processing, which requires that a new
category of “editing” operations (such as bypas:. include, except, treat as, inhibit, enable,
etc.) must be understood and handled.

b al i -ugﬂ

ST SOV N O SRt

PRI VPR vy PP

_tiAtLY,

£ raate.

Ak ke Pl

Aee aswre \AWAS avas

4.
PROTECTION ANAIYSIS

Rescarch Staff: Consultant: Support Staff:
Richard Bisbey |l Gerald J. Popek Nancy Dechter
Jim Carlstedt

Dennis Hollingworth

Dale Chase

INTRODUCTION

The Protection Analysis Project 1s an ongoing research effort toward improving the
security of existing general-purpose resource-sharing operating systems by finding errors
in their protection mechanisms. This task has come to be called "protection evaluation.”
The problem is of obvious importance n view of the investment existing systems
represent, their expected lifetime, and their insecurity. It 1s well known that curreni
general-purpose operating systems, due to their size and complexity, usually contain a
large number and variety of errors even after having been in service for years. These
include security errors--indicated by the fact that skiliful penetration efforts directed
against these systems invariably succeed. The task of improving such systems i1s urgent,
since many are installed in governmental, commercial, and mihtary environments in which
the requirement for security (in terms of the magnitude of losses from accidental or
intentional violations) i1s strong and immed:ate. These losses will be reduced in proportion
to the cost-effectiveness of the available error-finding tools.

APPROANCH

There are several possible approaches o the elimination of protection errors in
general-purpose operating systems. Probably the most elegant and formal 1s the use of
program verification techniques, 1.e., proving a program correct with respect {o a collection
of mathematical assertions. To use program verification for protection evaluation, three
tasks must first be completed:

1. The protection policy to be enforced must be formal zed.
2. The formalized protection policy must b2 proved complete and consistent.

3. The formalized protection policy must be translated into program verification
assertions.

Program verification techniques would then be used to prove the assertions correct with
respect to the operating system code.

There arw, however, numerous problems associated with the above apprnach First,
no cne has been able to write the formal protection policy for an operating system, let

dad e s

TG T

YT AR TIT g

k{g\nuc&il_ﬁ&t_‘ums}-“ L5 A0 Lk G

R T T e T T A I ey S PR, *

<

it

PROTECTION ANALYSIS 36

slone address the problems of proving that policy conmsistent and complete and of
translating it into program verification assertions. Furthermore, current program
verification techmques are not powerful encugh to handle the language constructs used in
contemporary general-purpose operating systems. Finaily, thers is the related problem
that contemporary operating systems are too large and complex to be considered as viable
candidates for verification.

Research is being directe.i lo the solution of each of the above problems. For
example, research is currently under way in formulating protection policy. Examples
include the “star -property” [Bell 73] and “data security” [Popek 76]. Considerable effort
is also being expended to improve and automate program verification techniques‘ and to
develop programming languages for producing oparating sveteme which are more amenuble
to program verification techniques [Lampson 76] Finally, research is being directed at
decreasing the size of existing systems [Schroeder 75] and craating systems based on
small kernels [Panel 74]

While an approach based on the use of formal techniques is desirable, the
aforementioned problems prevent their application to contemporary systems. What then
can be done? Twc basic problem areas require attention:

i. Derivation of the policy against which the correctness of an operating system’s
protection mechanisms will be judged.

2. Development of less formal evaluation procedures to compare the protection
policy with more immediately applicable operating system code.

The Protection Analysis project is addressing these problems in the following ways.
Derivation of Enforcement Policies

While it is not presently possible to specify a total protection policy, let alone verify
its completeness and consistency, there is a basis for empirically identifying elements of
that policy from observed protection errors in existing systems. Because protection
errors are, in fact, nothing more than violations of some protection policy, from a rollection
of observed protection errors it is possible to derive the protection policies violated.

Identification of Evaluation Tools and Techniques

The second problem is to evaluate the protection ~iechanisms of operating systems
with regard to the derived policies. As stated previously, general-purpose program
verification techniques are not powerful ennugh to handle programs of the size and
complexity of contemporary general-purpose operating systems. However, it is possible
to develop for a single, specific element of protection policy 2 special-purpose evaluation
tool or technique.

*Gee Section 1 of this report.

RO e gl vy weaat Bt a a

h 3
s v bt s A AL AL

T Y R STy

PROTECTION ANALYSIS 37

in summary, the IS! approach consists of deriving protection policies from known
protection errors and developing individual search techniques capitalizing on these
policies. (For @ more detailed discussion of the issues involved, see [Carlistedt 75])

PROGRESS

During the past year, an analysic was completed of a colleciion of known protection
errors in operating systems. The goal of this analysis was to categorize the errors as t
type. As a result of the study, it was found that all of these errors fell into one or mor»
of ten categories.

The remaining research effort has focused on the generation of operating system
evaluation procedures. The three error categories for which investigations have been
completed are: consistency of data over time; validation of operands; and residuals.
Research continues for other categories.

Consistency of Dita over Time

Operating systems continuously make protection-related decisions based on data
values contained within the system data base as well as on values which have been
submitted to and validated oy the system. [n order for a correct protection decision to be
made (in the absence of other types of protection errors), the data must be in a consistent
state, i.e., the value or structure of the data on which the protection decision is made must
be in some specific relationship with other data in the system, and must remain in that
relationship during the interval in which the protection decision is made.

Protection Errors in Operating Systems: Inconsistency of a Single Data Value Over
Time [Bisbey 75] describes the general error type as well as a particular instantiation, i.e.,

those errors resuiting from inconsistencias in parameters supplied to the operating
system.

Validation of Operands

Within 4an operating system, there are numerous operators responsible for
maintaining the system’s data -ase and for changing the protection state of processes or
objects known to the system. Many of these operators are critical in the sense that if
invalid or uriconstrained data are presented to them, a protection error resuits.

Protection Errors in Operating Systems: Validation of Critical Conditions [Carlstedt
76] investigates the validation of conditions attached to critical operators and their
operands, especially when those operands can be readily influenced by users. A
companicn research report [Bisbey 76] describes a specific technique, Data Dependency
Analysis, for automatically finding data flow paths within operating systems, thereby
making it easier to detect errors of this type.

1

:
9
E

RNV PSS ST P PRI [0 Y L. TN

PPN L

A A AN A A R A L AneA

fee 2w

I SN VRSP IRSIPULL Sv Npes

PROTECTION ANALYSIS 38

Residuals

A widely recognized error type is that of the “residual,” i.e., information which is
"left over” in an object when the object is deallocated from one process and allocated to
another. Several types of residual errors exist, including

o

® Alccess Residuals. Incomplete revocation or deallocation of the access
capabilities to the object or celi.

1
N
J
]
A
:

® /Mutribute Residuals. Incomplete destruction of the cell's context with other]
cells or objects, and of old values within the cell. i

Protection Errors in Operating Systems: Allocation/Deallocation Residuals
[Hollingworth 76] examines the sources of these errors and discusses strategies for them ;
in operating systems. 3

Future research effort will focus on the development of evaluation procedures for i
finding other major error types.

IMPACT

The work described here in will have an impact in several areas, most immediately in
the evaluation of existing operating systems with respect to the reliability of their security
mechanisms. The empirical basis of the research makes it easy to incorporate new error
types and detection techniques should they be identified. The evaluation techniques can
also be used in computer acquisition as part of a set of standard tests for system
acceptance. Additionally, the data base of errors and error types is useful in the repair i

g or modification of existing systems; it could form the basis for a "best practicas manual,” .
: i.e,, a discussion of errors and problems that should be avoided in the design of future '
b systems and protection mechanisms. Finally, the analysis needed to derive ar.or types ’
3 and to develop associated error detection algorithms yields insights that contribute to a b

deeper understanding of protection itself.

39

REFERENCES

[Bell 73] Bell, D, and L. LaPadula, Secure Computer Systems: A Mathematical Model,
ESD-TR-73-278, Vol. I, November 1973.

[Bisbey 7S Bisbey Il, R, G. Pcpek, and J. Carlstedt, Protection Errors in Operating
Systems: Inconsistency of a Single Data Value Over Tume, USC information Sciences
Institute, ISI/SR-75-4, December 1975.

[Bisbey 76] Bisbey I, R, J. Caristedt, D. Ctase, and D. Hollingworth, Data Dependency
Analysis, USC Information Sciences Institute, iISI/RR-76-45, February 19786,

[Caristedt 75] Carlstedt, J, R Bisbey i, and G. Popek, Pattern-Directed Protection
Evaluation, USC Information Sciences Institute, ISI/RR-75-31, June 1575.

[Carlstedt 76] Carlstedt, J., Protection Errors in Operating Systems: Validation of
Critical Conditions, USC Information Sciences Institute, I1SI/SR-76-5, May 1976.

[Hollingworth 76] Hollingworth, D., R. Bisbey I, J. Carlstect, Protection Errors in
Operating Systems: Allocation/Decllocation Re.ctduals, USC Information Sciences
Institute, ISI/SR-76-7, June 1976.

[Lampson 76] Lampson, B, J. Horming, R London, J. Mitchell, and G. Popek, Euclid
Report, Xerox Palo Al’o Research Center, April 17, 1976, Draft.

[Panel 74] Panel Session--Security Kernels, AFIPS Conference Proceedings, National
Computer Conference, Vol. 43, AFIPS Press, 1974, pp. 145-151.

[Popek 76] Popek, G, and D. Farber, A Practical Ezample of Program Verification,
University of California at Los Angeles, 1976, submitied for publication.

(Schroeder 75] Schroeder, M., "Engineering a Security Kernel for Multics," Prcceedings
of the Fifth Symposium on Operating System Princioles, ACM Operating Systems
Review, Vol 9, No. 5, November 1975.

de o ALy "
Y A b St S i o b bn i o s v 00

e e = At amAne s——

—r — e
s :ii‘:‘ﬁ

rati s

it S 2 ke

ledw it aatr g,

STt kb 2 s L 2T,

SR s o s L a2l 0 Sl

kcw.._‘ PRSP

40

5.

INFORMATION AUTOMATION
Research Staff: Research Assistant: Support Staff:
Donald R. Qestreicher Larry Miller Katie Patterson

Robert H, Stotz
John Collins
John F. Heafner
Robert T. Martin
Joff Rothenberg
Ron Tugender
Dono van=Mierop
John J. Vittal

INTRODUCTION

The increasing sophisticaiion of weapons systems and decreasing time frame for
making decisions make it essentiai {0 provide the military commander better quality
information faster, even though manpower has been reduced by the conversion to
ali-volunteer forces. With today's technclogy, messages can traverse several thousand
miles in fractions of a second, but hours are lost at either end, both in entering the
message intv the communications sysiem and in delivering it to the man who can act on it.

The I[A project is studying the application of on-line, interactive computer
technology to the military message handling problem and is preparing an operational test
for a system designed to help solve the problem. On the basis of the ARPANET message
system experience, we are confident that such a service has a high payoff to the military.
Not only can formal message preparation and delivery become faster and more reliable,
but the processing facilities provided can also be put to new use; for example, with such a
service the status of a message is automatically available at all stages from preparation to
delivery. Much more detailed accounting and auditing is easy to maintain, providing a
better understanding of the basic communication process. Entirely new facilities become
available as weil: for example, using the message service to alert individual users when
certain events have occurred (c.g., "the message from Capt. Jones that you were
expecting has arrived”). Automated suspense files, calendars, etc. are also simple to
provide.

Perhaps the most important contribution of such a system is that it makes available
a secure, informai (off-the-record) message facility. This "electronic memo pad” is swift
and convenient to use and, unlike the telephone, does not require the simultaneous
attention of sender and receiver.

The project is specifically directed to the military communication envirnnment, and
even more specifically to nonexpert users. The most effective way to introduce such a

N b3 s s i

AT amtrn

TR PR ZOA ¥

SLEAX Pk e it A S AT

2 Vg

T
x‘}’

INFORMATION AUTOMATION 4]

service into the military community is by means of an operational test at a military site,
which will cerve a twofold purpose: it will demonstrate the utility of an on-line message
service in an environment credible and comprehensible to military planners, and allow
system planners t6 understand the impact of such a system on the user organization and
to evaluate the cost versus benefits of its various features. System buiiders will obtain a
better understanding of the impiementation and delivery issues.

BACKGROUND

Although the IA project actually began in tho fall of 1973, its roots reach back to a
five-week study, conducted on behalf of ARPA, of the military ccmmunications on the
island of Oahu [1]. This study was initiated at the request cf the Secretary of Defense for
Telecommunications as a part of a Navy program called COTCO, whose mission was to
consolidate and improve communications on Qahu. Until ARPA’S involvement, COTCO
advocated ccnventional data processing solutions. The ISt repo: t recommended 2 complete
island-wide interactive writer-to-rcader message service electrically coupled to AUTODIN
(the military’s backbone communication system); it was submitted by ARPA to DoD, where it
excited considerable interest but was generaily regarded as too radical to be included in a
production system without a better appreciation of its cost and benefits.

Recognizing this, ISI cooperated with ARPA in developing a sensible military message
program and in making the case to the military establishment for the usefulness of a test
of an on-line interactive messages service in an operational miiitary environment. From
such a test one can learn what features are valuable, how the service is used, and how it
affects the way the u.er organization does its business. This information is essential for
long-range military communication planning and for proper implementation of production
systems,

By the summer of 1975 ARPA organized a separate program for military message
handling. In December 1975 the effort culminated with the signing of a memorardum of
agreement between Commander-in-Chief, Pacific (CINCPAC); Commander, Naval Electronics
Systemrs Command (NAVELEX);, Commander, Naval Telecommunications Command,
(NAVTELCOMM); and Director, Defense Advanced Research Prcjects Agency (DARPA). This
memorandum calls for a test of such an experimental message service to be run at
CINCPAC staff Headquarters, Camp Seuth, Oahu The experiment is designated to begin in
January 1977 ard to last for two years. Funding is to be shared jointly by NAVELEX and
DARPA,

INFORMATION AUTGMATION PROJECT

The IA project was started at IS| in the fall of 1973 with a twofeld goal: [) to
develop the technology for providing on-line computer services directly to users who are

2Sed T 4

O R

> iz

3
5

A Al i Oy

INFORMATION AUTOMATION 42

neither specialists 1n computer science nor spec:fically trained operators and 2) to develop
ar on-hne, interactive, writer-to-reader message service for the military community. The
two goals are in fact indivisible. The military action officers whe send and receive
messages are not computer specialists. For the service to be useful, an interface must be
provided that knows a great deal about each individual’s hanits, thus making his use of the
service seem easy and natural to him,

The military have been users of an electronic message service for many vears. At
each organization the service has always been handled as an over-the-counter business,
an outgrowth of its development from telegraphy. Over this long history much procedure
and policy has developed. It is the over-the-counter, manua! handling of messages that
the on-line service is designed to replace. This new system will bring a new style of
operation which will affect some of the old policy and alter much of the procedure. To be
a success, an on-line message service inust provide the improvements inherent in
automation without overly disrupting the traditional patterns and procedures that are
known to work. The manual nature of today’s message service is somewhat cumbersome,
but it is extremely flexivble; each command or organization is able to tailor its procedures
to its ewn needs. One of the unique goals of the |A message service is to provide this
tailorability.

To adequately support military message handling the organizational structure of the
user cemwraunity must be reflected in this service. For examplz, the rules about who can
access what message files and who can release what messages must be carefully modelled.
By definition, formal military message traffic flows between commanders of organizations,
even though the messages nearly always originate anu terminate at much lower levels.
This necessitates special "coordination” or "staffing" procedures on outgoing messages
(which require approval up the entire chain ¢f command) and complicates the distribution
of incoming messages. The IA military message service is unique in its approach to these
problems, making it possible o retain these formalisms to any degree found necessary in
the tests.

It is also necessary that the on-lira service be easy to use. It is certainly easier to
type "send for coordinaticn” than to hand-carry a draft message arcund to each
coordinator. However, by automating this transmission we are faced with making the use
of terminais competitive with paper and pencil. Toward this end the |A project is
developing scanning and editing aids that currently do not exist. For instance, tc facilitate
integration of comments and changes from several coordinators, the service offers the
ability to compare two versions of the same paragraph on separate windows of the CRT
screen, highlighting the differenzes by making the changed characters brighter.

The proposed IA message service is dwided into two stages: preparation and
delivery. The former stage includes the creation of the draft message and the
coordination of this draft with other users until it is signed cff for release. For this stage

P

“!‘
k-_’k&-.&ﬂ;w{ﬂ%‘}z&ln. -

¢

TVA W05 SR

el L oo v

"

T

KT

AN 20 M) S et s

oh ’

INFORMATION AUTOMATION 43

the |IA message service provides a special-purpose editing program which understands
message formats and checks that the contents or the various fields are legitimate. The
editor is structured so that a coordinator’s editing of a message is stored as a special
change file rather than as actual modifications to the original.

The author of the drait mescage controls the sequence and timing of delivery of the
draft to coordinators. The message can proceed serially or in paralle! (or any combination
of the two). The author can have the message returned to him after each signoff (so he
can incorporate the changes), he can ask that he simply be notified after each signoff, or
he can let the coordination delivery proceed automatically.

Often a coordinator of a message wishes to obtain the opinions of others on his
staft before he signs off. The |A message service allows the coordinator to "deiegate” to
as many peuple as he wishes the capabilit; to comment ang edit the message (each
delegate edits from the origin»' and creates his own change file). If so inclined, the
coordinator may also delegate the signoff responsibility, but this is restricted to a single
delegate only. The message service may retain alt of this delegation information for audit
purposes. It is planned that this delegation facility will be extended to permit a user to
specify in advance the criteria for selecting messages to be delegated to others. The
service will then automatically perform the delegation whenever a message meeting these
criteria is veceived.

This coordination process can be iteraied as often as necessary, with each version
being coordinated independently. A major IA research goal is {0 learn more about the
staffing process and about how to structure the cor.puter-aided environment to enhance
the effectiveness of this coordination.

The delivery stage involves conveying the message to its ultimate recipients,
archiving it, plus providing aids for the user to sort his messages, scan them, and file them
for later retrieval. The first step in this process is to determine distribution for the
message. Because of the military policy that alt formal traffic flows between commanders
of organizations, it is necessary to employ complex procedures to determine the real
ultimate recipients. The |A message service extends the normal "one-pass” distribution
algorithms provided in current AUTODIN terminals (e.g., LDMX) to allow each user to build
his own automatic personal distribution determination. A special form of distribution
determination provided by IA, called Guarding, allows a user to specfy criteria for
messages that are to be routed to the first “on-line" user on the guard hist. This assures
that incoming messages meeting these criteria will be delivered to a live person who can
act on it immediately.

In addition to determining the distribution of a message, it is military policy to ass:ign
one of the recipients responsibility for taking whatever actior 1s appropriate. The officer
assigned the "Action" may further delegate the Action tc a suhcrdinate or ~ay "seli the
action” to some other more appropriate officer. The auiumated message service must
keep track of this action assignment untii such time as the action has been completed.

2 b e wh)

i

INFORMATION AUTOMATION 44

A different form of special handling offered by IA is the alerting mechanism, which
ailows users to specify criteria for messages that will cause immediate action on the user’s
screen when they are received. This will notify the user of the event immediately, if he 15
on-line, or as soon as he comes on, if the event cccurred while he was off-line. A further
advantage is that wherever he 1s he may get on-line via any available terminal.

Message selector criteria can also be applied to incoming messages to sort them into
“folders™ for the user, which provides the electronic analog of file cabinets. Since the
message service can relrieve messages rapidly, these users’ foiders actually store only
citations to messages rather than the messages themselves, which reduces the computer
storage required to easily manageable size. The 1A Message Service provides tools for
specifying "key words”™ which can be used for [ater retrieval of the message.

User Support

The ARPANET experience provides ample evidence that computer scientists can use
on-line systems effectively with httle or no formal traiming in their operation. There are
also many examples of systems used every day by nonspec'alists who have had intensive
training (e.g., arriine reservation clerks). To be effective, however, a military message
service must be usable by non-computer people (action officers) with minimal formal
trainng. Few officers spend more than 10 percent of thewr time 1n message-related
functions; moreover, the preseni cffort requires no specialized training. No on-line
message service will be used in the military 1f 1t is not virtually self-evident and highly
supportive whenever the user has any questions or difficulty. The 1A project is focusing
on thic problem as a central research ssue.

The approach chosen to provide the necessary support for the user who is not a
trained operator or a computer specianst s to interface him to the message service
through an “intelligent front-end process™ which we call his "Agent.” This Agent makes the
service appear consistent to the user. It 1s designed to handle all control procedures (e.g.,
editing, help, defaulting, error nandling, context mechanisms, etc.) in the same place and
therefore in the same way throughout all phases of the service. The lack of such
consistency 1s a major source of ditficulty in the currant TENEX message facilities. The
Agent and its components are described in detail in (2, 3, 4). Briefly, it consists of a
Command Language Processor, 2 User Monitor (with attendant background analysis

processes), and a Tutor,

Command Language Processor (CL.P). This serves as the interpreter fe; uzer commands
operaling from a dynamic input siring and provides input editing funciiwuss and screen
control. To support the neophyte, the CLP has a strong emphasis or error detection,
recovery, and correction. [t also acts as the driver for the rest of the Agent, calling in the
User Monitor and the Tutor when appropriate. The CLP operation is atferted by User
Profile data which provides information unique to each user.

VTN VT TNUR T S

EEAPEPUNG VI

SO I L e S eid LN P S T e £l oat B AN AL Laa T aan s aLe 5,

s sy,

PO

O Y 7 YO SR,

AP ED A e s s e

b e

et ¥ A kAP i

N

TR RERe L

Carce s ons Catdog sel e car Sk C ALt

GE s v 1

INFORMATION AUTOMATION 45

User Monitor (UM) and /inalysis Packages. The User Monitor collects data on user
performance and provides the User Profile data used by other parts of the Agent (Tutor
and CLP). Analysis programs process user performance data to test hypotheses and
modify the User Profile.

Tutor. This provides intelligent help to on-line users by explaining commands, reporting
errors, introducing new features, and providing reference documentation. Tutor operation
is also affected by the contents of the User Profile.

The Agent is designed to collect specific data about the user’s use of the service, to
make certain analyses of that data and, on the basis of the results, to recommend changes
in the way the user deals with the service or the way the service looks to him. After we
have gained actual user experience, we fully expect to have to change the nature of the
data collected, the way 1t is structured, and how it is analyzed. In this process, however,
we expect to learn a great deal about the critical parameters of a man-machine interface
and how to control them to maximize the user’s performance and satisfaction,

Reliability

Resilience of the service is an important aspect of a message sarvice. The ‘A
design calls for a distributed process across multiple host processors with redundant
copies of the service’s basic files dispersed amcng the hosts. If any one host is not
operating, any user can then still be served. Since the processes are distributed. a user
does not need to run on the machine which stores his files.

In order to make this work, file naming conveniions must be coordinated to insure
syslem-wide uniqueness. In the IA message service design there are three distributed
processes, each of hich controls a separate data base. The Conordination Daemon
controls all messages in preparation; the Transmission Daemon controis all messages that
have been released; and the User Daemon controls all user personal data files. Every host
involved in the service has a copy of each of these daemons. When a user logs on, he is
assigned to a host by the User Daemon, That host’s daemons retrieve his personal files
and then start up a job for him. This user job talks to the daemons for all its subsequent
message file accesses. This distributed nature of the IA message service with redundant
file storage provides the robustness required for a military environment. (Because of the
cost implied by such z distributed service, this aspect of the IA Message Service design s
not being implemented for the Oahu experiment.)

Security

Another important requirement for this message service 1s that it meet miiitary
security specifications. Although this test system will be operated at system high (i.e., all

ur 2P 20 Al

g kel NI

INFORMATION AUTOMATION 46

users are cleared to the highest level the system will carry), with access restricted to TS
personnel, it is a test objective that the message service address the security issue
directly in its design principles. Previous research done by MITRE has identified the
attributes that a system must possess to meet this criterion. The challenge is to build the
service in such a way that someone can verify that the program indeed does have these
attributes. The current state of orogram verification will not handle programs of the size
and complexity of the IA system.

The approach being taken is to concentrate all of the security-relevant code in a
single, small module (a security kernel). If it can be shown that this kernel does indeed
handle all the security issues, the rest of the code does nat need to be verified. The
project schedule does not have time to actually verify this kernel, but the system is being
designed with a xernel in it, which--given the proper effort--could be verified. The
TENEX operating system, on which the message experiment wiil be run, is being altered to
reflect military security, and is assumed to be a part of the kerne!.

Privacy (discretionary contro! of message access on criteria other than security
level) 1s another major concern in a message service. The principal difficulty here is in
eliciting from the mililary a reasonable statement of what the ruies should be. "Need to
know" is a highly judgmental quality and very difficult to model. The IA project plans to
embody access control mechanisms general enough to be applied to a broad set of models.
The service will support author-assigned access control to annotations associated with
messages and to personal files.

Scalability

In the COTCO study it was learned that during the average day on Qahy, 6,000
formal AUTODIN messages are sert out and 15,000 messages received. To insure that
received messages get to the appropriate people an average of 40 copies are distributed.
The CINCPAC communication center devotes a 24-hour-a-day printing press tc this
function. To handle traffic of this magmitude in an on-line system, it 1s necessary to
organize the messages as efficiently as possible; for example, when a message is
"delivered,” instead of making a private copy for each recipient (as i1s done with current
ARPA message services), the IA system delivers a brief "citation” to the message. The
user 1s then granted read-only access to these central copies when he wishes to read its
contents,

Other design decisions in the IA message service also reflect this concern for
scalabiity. The orgamization of user files 1s also done by a central process (User Daemon)
to compact them as much as possible. In this way, data relevant to many users can be
kept in the same TENEX directory rather ihan requiring a directory per user. The
daemons are distributed processes that operate across multiple hosts on the networx so
that the service can grow in a2 straightforward way by expanding the subnet (more nodes
and more links) and adding more message processors.

ik b el SATL

P TR W LR T

B it C e ol JTE L JE D R YU T T (V1L LT ST T T TN T

INFORMATION AUTOMATION 47

Terminals

A significant part of the |A project is devoted to providing good human engineering
to the military message service. For the traditional action officer to accept it, the service
must be easy and simple to use; the cutting edge of this problem is his interaction at the
CRT terminal. We believe it is therefore critical to provide two-dimensional editing with
instantaneous feedback of trivial operations, as though the user’s keystrokes actually
performed the operation (insert a character, delete a character, move cursor, scroll,
identify a cursor location as being data of interest, etc.). Other more complex operations
are deuit with as commands to the system Agent. For these, indication that the command
has been input should be instantaneous, but longer delay in actuai performance of the
action 1s acceptable.

For a message service test in which users are separated from the supporting host
by a network, it is difficult to supply the necessary speed of response unless processing
is done at the terminal site. With this two-stage architecture in mind, |A has designed a
front end process (called Terminal Control) as a separable module for handling actions
local to the terminal. Terminal Control will be put into a microprocessor which is to be
provided as part of each CRT terminal on Qahu (see the final subsection of Section 7 for
details of this development).

The Military Message Experiment

As described earlier, the principal focus of the IA project is on the test to be run at
CINCPAC Headquarters in 1977. There are currently two other message services (being
built by BBN and MIT) addressing this same test, although only one service will eventually
be used for the operational test. In addition there 1s a FDP-10, communication equipment,
and terminals to be procured, installed, and maintained. For cost considerations a team
from MITRE and NRL (this will be a single-host test) 1s overseeing the security designs of
each message service, while another individual 1s working on training requirements. A
different group from MITRE 1s developing a Test Plan for the evperiment, including the
determination of data collection requirements and analysis to be conducted.

As a part of the Test Plan development MITRE has generated a Concept of
Operations, which describes in detail the operation of the specific community of users that
has been selected for this test, Operations Directorate (J3).

PROGRESS TO DATE

During the past year progress has been made on four fronts: understanding the
user and his environment better, developing and presenting the plan for the QOahu

SR Iei e o

e SdCn 72t

o

PE e PTPTIALTEY

e

LT bans S50 3 Cnaf Nt i e) Tt LT L b g

INFORMATION AUTOMATION 48

experiment, developing the software for the IA message service, and developing the
terminal for this test.

Understanding the Uscr

As this test has been slowly taking shape, the selection of the ultimate user
community has been narrowing, until iate this spring the J3 staff at CINCPAC was celected.
MITRE personnel have spent time observing the operation of this group and have fairly
well identified the operations these users currently perform in their message handling.
From these, MITRE has abstracted a set of functions which the message service should
support. Some of these are general-purpose in nature, while others are highly specific to
this community. The general functions called for match quite well those stated as design
objectives of the IA design in various earher documents [5, 2, 61

Another aspect of understanding the user involves providing the optimum language
for him to communicate with the system. In 1974 [3] a methodology was outlined for
selecting and improving this language. This methodology (which we call protocol analysis)
was tested in 1975 [7] using a selection of computer scientists as subjects. In February
1976, a protocol analysis test was conducted in Washington D.C. using 21 subjects from
various naval commands (NAVELEX, NAVTELCOM, NAVCOMUNITWASH). These subjects
included senior naval officers, engineers, enlisted personnel and secretaries. The results
of this test were published in May [8] and revealed interesting valuable data. The test
served to ascertain how the users wanted to be able to use the system, how they wished
to pbrase instructions to the system, which functions they used most frequently, what
vocabulary they employed, and so forth. It also helped in identifying many necessary
functional requirements of the service (e.g., by clarifying the overall structure of the
message operation and the interaction of its parts). Since the nature of formal
communications within NAVELEX and NAVTELCOM appears to be different from that in the
Operations staff at CINCPAC, in July of this year a protocol analysis will be conducted on

QOahu using a representative sample from the eventual community of users in order to
understand their specific needs.

Developing the Plan for the Experiment

Since ISI has been involved in this ARPA program from its inception, it has
participated to some degree in many phases of its planming. In January 1975, the IA
project produced an informal report to ARPA and NAVELEX called Miitary Message
Processing System Destgn which outlines our 1deas of how a test plan should be organized
and what it might contain. Since then MITRE has been contracted to develop a formal test

plan, and the |A project has reviewad and critiqued the various drafts of that document as
it has evolved.

PIEIIRR SER N

e B L A% S At T

hﬁ e b e RWRRAATT LA L, Con AT AT STl TR AR AT O 0

INFORMATION AUTOMATION 49

in order to assist ARPA and NAVELEX in planning for this experiment, the project
has produced a number of reports and documents during the past year, including a
3 recommended TENEX contiguration, a study of potential systems for use as the data
1 concentrator for the test, a specification of the functions and equipment required for that
data concentrator, and several PERT charts for the system integration for the experiment.
3 The recent attzntion to security has required IA participation in joint discussions with the
% other message service developers and the security control team from MITRE and NRL.
From these discussions each service is developing its own approach to handling security.

RIT T

Message Service Development

Sada it a0 2

P

During the past year the |A message service has gone from a design on paper to a
near operational system. From the start the service has been divided into two major

gt

phases.” Phase | invclved development of the Agent and the creation and coordination 4
aspects of the message service; this has required bringing up at least skeletal versions of i
all the basic modules of the service. Phase 2 covers the message reception, archival, and 4

retrieval features of the service. Phase 1 is neariy complete, and Phase 2 is under way.

The parts of the Agent developed :his year include the Terminal Simulator, the
Command Language Processor, and part of the Tutor. The terminal simulator 1s
code-resident in the PDP-10, which is designed to make the HP 2640A look to the user
and the rest of the service like the new terminal. It provides multiple windows, with
independent scrolling, local editing, and function keys. This simulator is necessary until

the new terminal is ready.

oAt 2 23

sttt i S

The Command Language Processor (CLP) does the command interpretation and makes
appropriate calls on the functional module. The CLP is table-driven, making the addition of
new Or altered commands straightforward. The CLP controls a two-line "command
window” on the screen; it provides spelling correction and automatic completion of
commands and arguments. All lexemes handied are compared to a synonym lexicon before
being parsed, allowing flexible substitution of values.

ANl 2o v, .

JE P o)

A help facility is being developed as the first part of the Tutor. It operates on
syntactical entities (terms the user wants to know about). A menu is provided from which
the user selects the nature of injormation he wants and the level of "verbosity™ of the

answer,

The functional aspects of message creation and coordination are provided by the
Functional Module and the Message Access Module of the user job and the Coordination
Daemon. The Access Module deals with the message as it is stored on file by the system,
The Functional Module converts the commands from the CLP into appropriate calls on the
Access Module and displays the resuits on the terminal, through a submodile called the
Virtual Terminal. The Access Module shields the Functional Module from the detailed file

e EP L it PR PP

L.
khu«_,u i L R Y N Ly T LT TR ST & T

INFORMATION AUTOMATION 50

rapresentation of the structure of a message. The Virtual Terminal shields the Functional
Module from details of the terminal characteristics.

The VT, FM, and Access Module currently support creation and coordination of a
message. An originator drafts a message, adds comments to fields as desired, fills in the
Coordination field with user names, and then sends it for coordination. The message
coordinator may then edit the message and add comments of his own. In addition, he may
retrieve lower leve! intormation such as precederce assigned to the message review, and
whether he has been asked to sign off or just edit and comment on the message. A
coordinator may start a sub-coordination list f his own. The author may then compare
coordinators’ renditions with his original, or with each other, via split screen display.

The Functional Module is associated with each logged-on user. The Coordination
Daemon controls the central messages-in-progress file, where all messages being created
or in coordination reside. When a drafter originates a messag»~, or a coordinator adds his
changes and comments, this process controls writing the update into the actual message
file itself. In addition the daemon sends out citations to users when they are due to be
notified of a message ready for review. Currently the Cocrdination Daemon aliows just a
single user access to a message at one time. Although it generates citations for messages,

the reception phase of the system cannot handle them beyond alerting the user of their
arrival,

Message Transmission

When a message has been reviewed appropriately it is released for transmissions.
The Coordination Daemon oarunes off the excess renditions, ail comments, and the

coordination list, and passes the message to the Transmission Daemon.

This process is
responsible for

formatting and sending the resultant message to its destination.
Eventually for the message experiment this will be the LOMX and AUTODIN. At this time
the message is formatted as an ARPANET message and given to the TENEX Mailer process.

Messages received from the LDMX will likewise be processed by the Transmission
Daemon and converted to the IA internal form., Recipients will then be sent citations for
these messages and the Functional Module of user jobs accesses the message in a similar

manner as a message in coordination, Currently ARPANET messages are processed in this
manner.

Mesrage Reception

Message reception on the IA system centers around the concept of file folders.
Initial citations to messages arrive from the daemons and are placed into 2 “Pending”

folder, somewhat like a person’s in basket or mail box. From the Pending file, messages

PET FEETS TR LY

P]
1
A
3
i;
I
£

e e dleg b

oo e d s

o

FPRT4

©AvI VoA

cadsy

po PO IY PN CA L AT MWL

. « . v s Ny
i 99 AT T F Ll el KT L LS 03 51000 A ASL2 ROt N0 8 Bllah HALTED 8

il

TR 1 ST AT

g~

TR T TR

INFORMATION AUTOMATION 51

may be moved into personal folders or to more generally accessible folders--analogous to
read boards or bulletin boards. Although the user thinks in terms of folders holding

messages, in fact only limited message data is stored. From this limited data, the fuil
message may be directly retrieved.

The handling of folders is done much like message handling--through a special
Folder Access Module that isoiates the Functional Module from having to know much about

the internals of this file representation. The Folder Access Module is being coded at this
time.

Folders have a nuimber of special fields which dictate how their entries are handied.
One field is an automatic input filter which allows messages to be automatically filed
without explicit user intervention. A Template field specifies what fields of the message
are stored for this particular folder and what fields or parts o’ fields are displayed when
the contents are examined. Thus the folder may store key words and the To field of each

message, but not necessarily display these to the user. These fields can then be used for
retrieval.

CONTINUING WORK

The 1A project has a goal of having an operational message service, including
preparation and reception phases, by the end of November 1976. A set of functional
requirements have been established by the Test Director for the Miiitary Message

Experiment. The IA message service will meet the majority of these requirements by that
time.

During the subsequent four months, the message service will be shaken down using
the Oahu host computer, live LDMX traffic, the new CRT terminals, and friendly military
users. During this period user documentation will be completed and test data coliection

routines will be incorporated into the service. Additional terminals will be built and
delivered.

In the spring of 1977, the emphasis of the project will shift from development and
shakedown to training, evaluation, and upgrading. It 1s anticipated that a number of
specific "structured” tests will be conducied to evaluate specific features of the seivice.
Ouring this period it is anticipated that an ISI representative will be on-site with the users
to assist in training and talloring the service to the users® needs.

By approximately July 1977 the formal operational message service test will begn,
By this time the principal tocus of the project will be on user and system support and on
data collection and analysis. Since this will be the first time unbiased users will be
operating the system, this will be a primary opportumty to study the effectiveness of the
agent in supporting the ronspecialist user.

I TTRY

AT

TP TR SO T [T e

INFORMATION AUTOMATION 52

«

REFERENCES

Eltis, 7. 0., L. Gallenson, J. F. Heafner, and J. T. Melvin, A Plan for Consclidation
and Automation of Military Telscommunications on Oahu, ISI/RR-73-12, May 1973.

Rothenberg, J. G, An Intelligent Tutor: On-line Documentation and Help for a
Military Message Service, ISI/RR-74-26, May 1975.

Heafner, J. F., A Methodology for Selecting and Refining Man-Computer Languages
to Improve Users' Performance, ISI/RR-74-21, September 1974.

Abbott, R. J, R Command Language Processor for Flexible Interface Design,
ISI/RR-74-24, September 1974.

Tugender, R, and D. R. QOestreicher, Basic Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23, May 1975.

Rothenberg, J. G, An Editor to Support Military Message Processing Personnel,
ISI/RR-74-27, June 1975.

Heafner, J. F.,, Protocol Analysis of Man-Computer Languages: Design and
Preliminary Findings, ISI/RR-75-34, July 1975.

Heafner, J. F,, M. D. Yonke, and J. G. Rothenberg, Design Considerations for a

Computerized Message Service Based on Washington, D.C., Navy Personnel,
ISI/WP-1, May 1976,

3
g
A
3
3
3
A

TR

6.
NETWORK SECURE COMMUNICATION

Research Staff: Research Assistant: Support Staff:

Danny Cohen John Kastner Nancy Dachter
Thomas L. Boynton George Dietrich
Stephen L. Casner Oralio Garza
E. Randolph Cole Clarence Perkins
James Koda Lec Yamanaka

Eric Mader
Robart Parker
Paul Raveling

INTRODUCTION

Modern military command and control techniques have created a critical need for
secure, low-bandwidth voice communication systems which maintain high speech quality,
operate in real time, and permit full duplex (simultaneous in both directions)
communications. Such systems should ultimately provide the capability for conferences
vetween many users at multiple sites, with ar efficient means for controlling the
conference. If these systems are to be fully secured, digital communication techniques are
necessary and must be developed.

Another trend in military communications is the use of packet-switched computer
networks, such as AUTODIN I, for data communications. Beginning in the 1980s, a large
pertion of the military computer communications load will be handled by packet-switched
networks, made up of telephone, radio, and satellite links. A capability for secure voice
communications over packet-switched networks would provide an efficient, cost-etfective
response to much of the secure voice communications problem, including conferencing.
The high rativ between peak and average data rates for voice communication makes a
packet-switched network an ideal communications medium.

A primary objective of the ARPA Network Secure Communication {(NSC) effort is to
demonstrate the feasibility of secure, high-quality, low-bandwidth, tull-duplex digital voice
communications over packet-switched computer communications networks. Much of this
objective has bean accomplished using the ARPANET, which has been the model for both
military and commercial packet-switched networks.

BACKGROUND

The ARPA NSC effort has been in progress since late 1973. The initial tasks were
to specify a nigh-quality low-bandwidth speech compression aigorithm, select a high-speed
signal processing computer which could execute the algorithm in real time, and select a
host and operating system to interface the processor to the ARPANET.

Ay

TR

AR VT

NETWORK SECURE COMMUNICATION 54

Linear Predictive Coding (LPC) was selected as the high-quality low-bandwidth
speech compression technique because i seemed to represent the best tradeoff between
computational complexity, bandwidth, and quality. The specific algorithm chosen was a
Markel autocorrelation-type LPC of order 10 using SIFT (Simple Inverse Filtering Tracking)
pitch extraction [MARKEL 72], [MARKEL 74] The LPC vocoder extracts 12 parameters
from a 9.6-millisecond trame of speech: pitch, gain, and 10 k-parameters (often called
reflection coefficients). The 12 parameters from each trame are encoded into 67 bits.
About 52 frames per second are transmitted, giving a transmitted bit rate of about 3500
bits per second. Nothing is transmitted during periods when the speaker is silent. This
system, called the Phase | system, is a fixed-rate, fixed-order system; it is full-duplex
(simultaneous analysis and synthesis of speech).

In 1973 a complete survey of high-speed signal processing computers was made,
and the Signal Processing Systems SPS-41 was selected to be used by the NSC group.
The SPS-41 is a 16-bit integer machine capable of 4 million 16-bit integer multiplications
per second, but with limited program and data storage and wira-wrapped construction.

The PDP-11 was chosen as the host for the LPC system, running under the ELF
operating system developed at Speech Communications Research Laboratory (SCRL). The
PDP-11 is to act as a host on the ARPANET and control the assembly and disassembly of
packets, input and output to and from the SPS-41, and the operation of the SPS-41
itself. It should be noted that not all NSC group members used the SPS-41 or PDP-11;
Lincoln Laboratory first used the TX-2 host and FDP signal processor, and later used a
PDP-11 with a Lincoln Digital Voice Terminal signal processor, while Culler-Harrison, Inc.
(CHi) used two machines of their own design.

With the hardware chosen and the algorithm defined, the next step was twofold:
formulation of a Network Voice Protocol (NVP) and implementation of the LPC system on
the SPS-41/PDP-11 combination. Preliminary specifications for the NVFP were issued in
June 1974 and final specifications in October 1974. Since implementing the LPC system
would be a time-consuming task, it was decided to test the NVP initially using CVSD
(Continuously Variable Slope Delta Modulation, the DOD "standard” high-rate vocoder),
which is particularly easy to implement. Therefore, in September 1974, an 8-kilobit CVSD
system was used to test early versions of the NVP; this great'y aided in the operational
development of LPC, revealing several problems with higher-than-usual data rates on the
ARPANET which were quickly corrected. The first CVSD tests were held between ISI
(using the SPS-41/PDP-11 system) and Lincoln Laboratory (using their FDP/TX-2 system).
This was a critical test for the NVP, since the systems were quite different.

After encountering many SPS-41 design problems, IS brought up LPC on the
SPS-41/PDP-11 combination in March 1974. In January 1976 the first LPC tests were run
on the ARPANET, between Lincoln Laboratory and CH. Again the hardware on both ends
was completely different. The ARPA LPC system met all its specifications and
demonstrated that the combination of low-bit-rate speech and a packet-switched computer
network was an effective one.

e

N b e anh

N X stk

aa

YTV ARy

TR

T°F

Caally SLatViaa St T ZICR LI ARSI N AL S o

NETWORK SECURE COMMUNICATION 55

The next step in demonstrating the usefulness of digital speech on packet-switched
networks was to implement a conferencing system. To do this it was first necessary to
expand the NVP into a Network Voice Conferencing Protocol, or NVCP [COHEN] This was
done, and on January 23, 1976, a four-way digital conference was held among IS, Lincoln
Laboratory, CHI, and SRI, using the standard Phase | LPC algorithm. SR! used software
written by ISI and modified slightly for their system, with ISI's help.

In 1975, in parallel with the network LPC conferencing system, ISI developed 2
sophisticated local CVSD conferencing system, called MA-BELL, for experiments in practical
digital conferencing within the Institute. in addition, MA-BELL is serving as a development
vehicle for the developinent of a convenient, human-oriented user interface for digital
conferencing systems. Future plans include expansion of the CVSD conferencing so that
participants can also be connected via the ARPANET.

In all of this, IS's NSC project has acted in the role of coordinator among the
contractors. The NVP and the NVCP were originally drawn up at ISl, then modified into
final form in discussions with the other ARPA NSC sites. The SPS-41 LPC analysis and all
the PDP-11 support software were writtzn at IS,

Acknowled gments

Throughout the ARPA NSC effort, the cooperation between the NSC sites has been
truly exceptional, as has been the guidance of the ARPA program management. Progams
and hardware designs have been freely exchanged. For example, the SPS LPC analysis
was written at IS, except for the matrix solution subroutine SOLVE, which was written by
BBN, and synthesis was written at SRI. Support software for the networn voice system
came from IS|, BBN, SCRL, and SRI. Technical consulting came from SCRL, 8BN, Lincoln, and
Utah. Lincoln, CHI, and SRI cooperated fully in b-inging up the system.

APPROACH

The primary objective of ISI’s approach to Network Secure Communications has been
to develop systems and techniques which are as generalized as possible. The NSC
low-bandwidth packet speech system is not specific to any one vocoder, such as CVSD or
LPC, or to any one packet-switchecd network, such as the ARPANET. Of course, some
portions of the system must be specific to the vocoder or the network in use; however,
these portions are either encapsulated in modules, such as in the LPC vocoder drivers, or
could be easily adapted, as in the network control routines.

3

PUSYLIEY

A A i, .r_aa.‘ﬁ’

LikE O A pt e

P AT DT AT A TN AN R 2o

B:
k>
£
¥y

NETWORK SECURE COMMUNICATION 56

The ISI NSC project has implemented a conferencing system, called MA-BELL, which
is presently based on CVSD and operates locally between several cffices at ISl. In the
future it will be expanded into a transnetwork conferencing system. Figure 6.1 illustrates
a conference with four users, one of whom acts as the chairman. The system control
panel is shown in the center of the figure, with three users using CVSD vocoders plus a
control box, and the fourth using a standard pushbutton telephone.

MA-BELL can handl. severai participants, in either a point-ta-piint or a
conferencing mode. Each user may communicate via a CVSD vocoder (three are shcwn in
Figure 6.1) and a control box (see Figure 6.2), or via any ordinary telephone equipped
with a pushbutton pad. In the latter case, the phone’s pushbuttons serve as the control
panel. Thz purpose of the control panel for the ordinary participant is to ¢..cer or leave
the conference, ask for or relinquish the floor, entar a vote, etc. The r.:airman’s own
control panel, in addition to those functions, can control the entire conference, assigning or
reassigning the floor, inviting particinants, initiating a vote, etc.

The chairman can also control the conference from the system control panel, SCP.
The SCP shows all the available information about the participants, including a graphic
display of the connections between the participants, who has the floor, which participants
have expressed a wish to talk (and are queued), whether the current speaker has been

warned that he is about to lose the floor to the next speaker, status of open votes, and
other functions.

Conferences are initiated by the chairman, who issues the conference-ID and the list
of parties allowed to participate. Thereafter each participant may join by “dialing” the
right sequence, which inclides the conference-ID. As long as there are only two
participants in a confere~za (the chairman and the first "joiner"), no conference discipline
is enforced and both can talk to each other just as they could over a regular
point-to-point connection; when the third participant joins in, however, the conference
discipiine is enforced and the participants can be heard only when they have the floor.

The floor assignment is either manual--by the chairman--or automatic. The
automatic schedule, which is currently that most frequently used, takes the floor away
from the current speaker 15 seconds after a request is made by another user of equal or
higher priority. The current speaker is warned 5 seconds before he loses the floor.
inside ISl the participants usually have the same priority. The “"behavior” of the

"scheduler” can easily be modified by changing the parameters involved and the priorities
assigned to each participant.

Control output to the participants (like "you: may speak now,"” "you ha ‘e lost the
floor * etc.) are i1ssued both by light signals to the control boxes and also vocally (by use
~1 sierecorded messages). Controlling a conference can be done better and more easily
from the SCP thar from any other station, because all the information about the siate of
the conference is graphically displayed in an easy-to-read and axiomatic fashion.

L

A R s ARAD 12 e K s bt g 2Dt a2 TE L atn

NETWORK SECURE COMMUNICAT® .4 57

Key ¢eatures of this approach to packet speech are

Separation of control messages from data messages.

o Robust performance in the event of lost messages.

¢ Elimination of the possibility of deadlocks.

e No end-to-enc retransmission of data.

o Dynamic adaptation to changing network performance.

e Sufficient guaranteed bandwidth for speech with minimum delay.
® Support of a flexible, human-oriented user interface.

All of these approach guidelines have been and are being followed throughout the
NSC project, although a few are very difficult to achieve in actual practice. For example,
dynamic acaptation to changing network performance will reauite additional work in the
network measurements area, leading to betler short-range measurements, before a truly
dynamic packet spaech system can be achieved.

A similar approach has been used in the choice and implementation of the vocoders.
The most important consideration was the highest possible speech qu- lity at relatively low
bandwidth, which led to the choice of LPC. Whiie the present Phase | LPC system
operates with o fixed output rate whenever the speaker is speaking, the Phase Il LPC
system currently being implemented operates with a variable output rate depending on
the speech itself. The latter system will exhibit a tigher peak rate with a considerably
lower average rate than the former, a feature which is pariicularly compatible with a
packet-switched network.

In addition, the CVSD vocoding technique was aiso used, not because of its features,
but because CVSD was chosen by the DOD as its standard "high rate” vocoding system.

PROGRESS
Conferencing System

Most vocoders in use are not linear in the sense that the output bit streams
cannot be added in any meaningful s nse. Therefore, a participant with only ore vocoder
can histen to only one speaker at a time. This does not allow the "common zir™ as in a
normal pnone conference, and creates a reed for conference control. Therefore, the
central issue in conferencing is the control of voice data flow and of controi information
flow.

LR IONCAVE PYRPRIR” N oo

o
o

NETWORK SECURE COMMUNICATION

tiay

hiAd IRk Ak bt]

i o 22

T EY

B
!

ey

QiSRS o s AT L S STl R s sty

Marty C, sle Photos
Figure 6.1 A conference using the ISI conferer. .ing system

- e R S DR SR T PP V) TV SRV

YT

TP TR DUk b p o

TIE

T

LES) Aiatind i f S

¥r

METWORK SZTCURE COMMUMICATION 29

Narti Coale Photos

Figure 6.2 Two generations of control bozxes

The chairman has two main functions: scheduling (fioor control) and directing the
speaker by talking privately to him wh e he speaks. The chairman has an open line to the
speaker at ail imes. This allows tne chairman to guide the speaker with comments like
"Please summarize your position, since | am about to take the floor from you.”

The voting process allows a user to vote (yes or no) without being poiled or having
the tloor. This 1s useful not only for voting but aiso for questions put forth on the floor
like "any comments?”, "any queshions?”, etc., since it saves the tedwous polling which is

otherwise necessary.

In the future. the chairman will be able to direct that the conference or portions of
the conference be recorded. This will provide an on-line conference transcript, which
acts like any other conference participant. All participants in the conference will be
informed that the conference 1s being recorded. Additional safeguarc -, such as ailowing

transcription only after a unanimous vote of the participants, could aiso t » implemented.

The Network Voice Conference Protocol (NVCP!
The conferencing feature of NVCP 1s based on the fcllow'ng model:

® Each participant has only one vocoder and therefore can histen to (only) one

speaker at a time.

L

¥ LN

ikt il oo ek 5O

TERT

NETWORK SECURE COMSAUNICATION 60

® In each “station" (i.e., host) participating in the conference, here s a process
controlling the access of all the local individuals (“extensions,” “participants®)
involved in the conference. This process is called the “loca' conference
controller” (LCC).

e There is one conference chairman, either one of the parlicipants ¢r a program
(co-located with one of the participants), which decides who is listening to whom
and when.

® All the conference handling is in addition to the regular .NVP procedurss.

The Network Yoice Conference Protocol is only a control protocol, making use ¢ the

same data protocols as used by the NVP. In fact, NVCP is defined as an extension to the
NVP control protocol.

It is most important to realize that the NVCP per se does not address the issue of
the man/machine communication either between the participants and the LCC, or between
the human chairing the conference, .f any, and the CHAIRMAN program controlling the
conference. This issue is an implementation issue and does not belong to the protocol;
however, some recommendations for the mar/machine interface are incluocd with the NVP
protocol.

The conference siructure. During a conference two logical networks exist: the first
is a high-bandwidth network carrying the voice data from the speaker to all the other
participants; the other is a low-bandwidth network carrying control information between
each participant and the confercnce chairman.

The first logical network, the data (or voice) network, 1s dynamically moditied as the
different users become (and cease tc be) the speakers. Whenever a participant receives
the floor (i.e., becomes the new speaker), the data network is reconfigured '« allow data to
flow from this participant to all the others.

In contrast to the data netw ork, the control network has a static structure, since the
conference chairman does not change during the duration of the conference.

Two aliernatives were examined and compared: one was to treat each individual
participant separately from the others in the same sile; the other was to group all
participants in the same site for optimizing of the network uytiization. No advantage,
except simplification of some programs, seems to justify the first possibility, and the
advantage in optimzing network utilization resulted in the decision to group all
participants at the same site together.

Two pussibiities were considered: negotiation with the chairman once per
participant, or once per host. The ‘atter was chosen for better etficiency.

NETWORK SECURE COMMUNICATION 61

Two data tratfic paiterns were compared, nne from the current speaker to all other
sites, and the second f-om the speaker to the chiirman, then to be distributed to all sites.
The first provides bet\er network utilization and ‘maller delays. The second is simpler,
since the data network does not change during th: conference as required by the first
method. Again, it was decided to sacrifice a little simplicity for the sake of network
utitization.

The user interface supported by the NVCP. The NVCP can support a user interface
which allows the user to do the following:

e Define a conference (with optional participants list) to be chaired by this user,
or by any other partictoant at the discretion of this user.

® Join a conference chaired by another user (dialing).
® Regquest the floor.
¢ Relinquish the fioor.

@ Perform several functions whose meaning is defined at conference time (e.g.,
voting, "yes” and "no").

e Terminate his participation,

The user interface will also zilow the system to tell the participant
® That he is "in"/"out” of a conference.
® That he may or may not talk.

® Several functions te - 1ssigned at conference time (e.g., "You have two minutes
to fimish talking™).

The conference organization. A conterence starts when the chairman tells his
system that he wants to initiate a conference and defines the participants list. At this
stage, a conference chairman control program is in:tiated.

Whenever a user wants to participate in a conference, he contacts the chairman (via
the LCC) and discusses :t with him (using the NVP negotiation procedure). Upon
acceptance of this user into the conferance, the cha.rman contacts the LCC, teling it to
add this user to the participants hst. Any active LCC 1s always told by the chairman from
which host data should arrive, on the link assigned by tius LCC (in the imtial call).

(7 oL A LEEARE O Aot S L Lt

2
e
3
g
D
o
S
s
%

NETWORK SECURE COMMUNICATION 62

When a change of spesker occurs, first the chairman tells the speaker that he does
not have the floor, then all the LCCs are set to receive data from the host of the new
speaker, and finally the host of the new speaker is toid to send dsta to all the
participating hosts. Only after the LCC finds itself prepared to ship the data out is the
user notified to start talking. (Of course, change of speakers in the same site may be
simpler, since other hosts do rot have to change their receiving procedure.) At any time
aach participant may send to the chairman control information (e.g., "l want to talk next®).
The chairman may at any time send control information to any participant.

As a general principle, all control messages are between the chairman and the LCCs,
never directly between the chairman and the participants themselves. However, the NVCP
provides a means for direct control communication between the chairman and each
particicant. This information is communicated via 8-bit bytes whose meaning is not
inierpreted by the LCC. This communication is carried by special control messages (e.g., "I
want to talk"™). Control information between the chairman and the individual participants
that has to be understood by the LCC is carried by other messages (e.g., "please shut up”).

Comments. Note that the chairman might never spezk if he so wishes (e.g., when it

is an automatic program). There is no requirement for the chairman ever to send data
messages (i.e., voice).

The chairman may assume that all his instructions to the LCCs are followed at once.

It is the responsibility of t{ « LCCs which delay their action (probably depending on data
fiow) to remain synchronized.

NVCP, like NVP, uses the controlled messages (Type 0/0) for all control information,
and might use uy~controlled (Type 0/3) or "normal™ messages for voice data. Each vocoder
is expected to start its output with the time-stamp (i.e., parcel number) set to zero.

Summary. With the model upon which our system is based, it can be recognized
that a protocol is needed. The NVCP provides the needed facilities for a real-time
packet-switched network conference system.

The EPOS Operating System

One of the critical links in the network/host/signal processor chain which is
necessary for packet speech is the host and its operating system. The ELF operating
system, developed by SCRL, was originally chosen for the NSC project’s PDP-11 operating
system because it was originally tailored for speech applications and was the only
available PDP-11 operating system capable of supporting packet speech.

Both the irutial CVSD and LPC packet speech systems were impiemented wus:ng ELF
ss the PDP-11 operating system. During the network experimenis with these systems,

PNA R0 TN

94Je-,,mmm_ﬂgm_pmg_@s«ﬂglg-mmmzﬁmww'

~

.

TR

R

(At tord

NETWORK SECURE COMMUNICATION 63

however, it was discovered that the POP-11 was very heavily {oaded and that most of the
end-to-end delay was caused not by the ARPANET, but by delays within ELF itselt. For
example, speech packets were recopied from buffer to buffer in the POP-11 several times
before being processed, each time causing additiona! delay and overhead. The PDP-11
was busy from 30 to 100 percent ot the time handling one 3500 bps LPC vocoder, as
measured by UNIBUS utilization. The 8000 bps rate of the initial CVSD-based packet
speech experiments was handled by an early, non-virtual-memory version of ELF which
was not powerful enough to handle the LPC system., Therefore, in order to handle LPC
conferencing, transnet and local CVSD conferencing, and possible future applications, the
operating system was re-designed. The result, EPQS, is the Environment for Processing of

On-line Speech,

Although the differences between EPOS and ELF are extensive, some of the major
speed improvements were accomplished by:

® Restructuring system control blocks to optimize the code referencing them; in
particuiar, the context switch code was reduced by half.

¢ Reducing the number of context switches required in interval timer handling by
eliminating the process which managed the interval queue, again reducing the
overhead by more than one half,

® Using a more efficient algorithm for inter-address-space data transfers, cutting
the time by 2 factor of 8 to 20.

o Totally re-organizing ine 1/O architecture and control structures. Rather than
having a general {/O control process with drivers for specific devices, EPQS uses
3 separate process tor each device; this allows the code to be specialized for
each device, so that fewer instructions are executed than for a generalized
process. 1/0 operations pass less information because more is kept in kernel
control blocks. This allows passing the parameters in registers rather than
copying a block of information to the kernel, cutting the overhead by a factor of

five.

® The network control process takes full advantage of the capabilities of the IMP
interface to provide maximum throughput. Specifically, for the network speech
applications, network messages are input and output to/from the user
program’s butfers, eliminating expensive copying. Probably the most significant
reduction in overhead 15 due to the efficient management of network /0.

(s

LURREE iy i S

2 s e Lt

NETWORK SECURE COMMUNICATION 64

in addition to performance improvements, EPOS has a number of features which
make it sasier to use:

System control biocks are not statically allocated; rather they are allocated from
dynamic storage as they are needed. This means that the system need not be
tuned for the resource requirements of a specific application at system
generation time.

The concept of a "job” is incorporated into the kernel of EPQS, rather than the
EXEC as in ELF. Putting user programs in separate jobs allows isolation from
errant neighbors and facilitates protecting the system against user errors.

1/O calls in EPOS are like those of TENEX. We have found that the ease of use
of these calls has significantly reduced the time required to write application
programs.

In more detail, EPOS supplies the following facilities for application programs:

Process management: EPOS combines process scheduling and interprocess
communication in a single signal/wait mechamsm. Semaphore operations are
also available. The system supports all normal auxilliary functions (process
creation, deletion, freezing, and thawing). This allows segmentation of
application programs into muitiple processes to correspond to the logical
structure of the task.

Job Management: A job i1s an independent computing environment, .ch with its
own set of private resources such as address spaces, processes, open files, and
assigned 1/0 devices. The kernel's address space and kernel processes belong
to job 1, which 1s allowed spec:al privileges by several system functions. Other
jobs run in user or supervisor space and are created in response to a control-C
input from ary un=ssigned terminal.

Memory management: EPOS allows each job to use multiple address spaces and
to use separate instruction and data spaces on macinnes whuse memory
management hardware supports this feature. “Virtual move" functions ailow
transfer of data between address spaces within a user job, or {when invoked by
kernel functions) between any address spaces. Page mapping allows sharing
memory pages and including particular physical pages in an address space. The
latter feature 1s used primarily for communication with signal processors through
shared memory.

I/0 management: System calls handle either bytes or strings The latter may
have a specific length or may be delimited by a specified characte:, su.h as a O
byte. EPOS also supplies asynchronous I/0 calls, which do not block the calling

ikt

-t

At k4 ks LR

NETWORK SECURE COMMUNICATION 65

process while its request is psnding or in progress. Devices currently
supported include terminals with either DL11 or DJ11 interfaces, IMP interfaces,
disks, and MX-521 CVSD vocoders. Disk 1/0 is currently limited to reading and
writing existing DOS files. Files opened on a pseudo-davice (IPP:) become
interprecess ports; this is the oniy means of communication between user jobs

which does not require doing physical 1/0.

® Special-purpose hardware support: In addition to page mapping, several system
calls allow user processes to perform device manipulation functions for signal
processors or other special-purpose hardware. User processes can allocate
interrupt vectors and specify the contents of signals to be issued when the
interrupts occur, and they can get and set the contents of particular device

interface registers.

Along with the EPOS operating system, the EPOS Exec provides a convenient
environment for debugging and using application programs. The Exec has external
characteristics almost identical to the TENEX Exec. It provides ulility services for loading
and running programs and checking their status. It also communicates with the debugger
to allow a user to change easily to debugging mode if a program requires modification or

repair,

One important feature of any programming environment i1s a good debugger. All the
existing PDP-11 debuggers of which we were aware fell far short of our standard, TENEX
IDDT. Many did not provide any symbolic capabilities at all (user-defined symbols,
instruction type-in, etc.). Most were written to run stand-alone on a PDP-11 and would
have required extensive modifications to function in the EPOS muiti-process environment.

Because of these problems and because we feit that a powerful debugger was
essential to enable us to produce good software efficiently, we designed MEND, the Multi
Environment Native Debugger. The design provided the most powerful set of features
provided by any debugger with which we were familiar (including IDDT). Implementation
of MEND has been approximately 75 percent completed; the only major feature lacking is
the breakpoint and trace facility, upon which impiementation has aiready begun.
Debugging done with the partially compieted MEND has confirmed that we have indeed

provided 2 most powerful debugging tool.

High-Speed Signal Processors

Much of the effort spent in the LPC implementation portion of the NSC project was
spent in isolating and correcting design problems in the SPS-41 signal processor which
prevented the LPC prcgrams from running. The Phase | version of LPC consumes about
95 percent of the SPS-41's time, and uses i3 of the machine’s 1§ Input/Output
Processor channels. Considerable time and effort was spent in adspting algorithms to the

e e s———
oo 7 rava vy

IR,

Zisalt,

S22l £t B

i
q
2
L3 mnos sdy b sd s Gt L b Pl bl € Atk S LA DK b 32 sy

I

MR-) i

A g R FE R TE P BT,

NETWORK SECURE COMMUNICATION 66

fixed-point architecture of the SPS. Even after many problems were corrected, the
SPS-4]1 was not reliable enough for useful demonstration work; therefore it became
apparent that, in order to do high-quality packet speech research and demonstrate the
results, a3 more powerful, reliable, eacier-to-program processor was required.
Consequently, in late 1975, an evaluation of the available state-of-the-art high speed
signal processors was undertaken. The requirements which had to be met were as

follows:
@ High reliability.
o Expandability.

o Availability of a simulator written in a high-level language and runnable on
TENEX.

o Portability.

o Floating point arithmetic,

More than 10 machines were surveyed, mostly commercial products, with some
research-type machines. Cost, availability, and capabilities soon narrowed the field to two
machines. An effort was made to obtain simulators (runnable on TENEX) for both machines
and write and run programs on them to assess the relative difficulty of programming each
machine. A secondary goal was to estimate the size and speed of LPC running on hoth
machines. ISl was abie to obtain the simulator for one machine, and implemented the basic
signal-processing subroutines needed for LPC on that simulator in a few weeks. That
machine, the Floating Point Systems AP-120B (FPS) was chosen as the most suitable signal

processing system,

The FPS AP-120B machine was delivered to ISI in June 1976, and interfaced to the
NSC project’s PDP-11/45. The Phase | LPC system is expected to be operational on the
FPS/PDP-11 combination in July 1976, with the Phase li system to follow a month later.
ISI's experience to date indicates that the FPS is reliable and programs which run on the
simulator will run on the FPS,

LPC

Maost of the progress in the area of Linear Predictive Coding (LPC) in the past year
has been in LPC conferencing and the acquisition of a new, reliable, high-speed signal
processing computer (the FPS) and the implementation of LPC. The original transnetwork
LPC experiments were conducted in late FY75, and the operating Phase | LPC algorithm
has changed little since then, except for some relatively minor quality improvements,

P e Lo

<
E1
E:
3]
L
®
af

EVIN WSRO P I

NI PR

Lo o plon b S0 0 0 i o e MDD 2 AT S DY g% S

LR

L L Dan

(AT

o VR EALLLOT nosntre e 1022 drad T

P

rromtad M faaid

.

K
B Lk S LI My PO 6o SLIT S At Lk A T LB L et 2T

NETWORK SECURE COMMUNICATION 67

The major effort in LPC conferencing involved the develiopment of a Network Voice
Conferencing Protocol (NVCP), wrich is described in [COHEN]. The conferencing system
was brought up in December 1975, and uses the stendard Phase | LPC. When the
Phase Il LPC is implemented, it can be easily installed in the conferencing system because
of the modularity and structure of the NVCP.

A Phase Il LPC system has been specified by BBN [VISHU]L The Phase Il LPC
system will be 2 variable-rate system with a peak rate of about 5500 bps but an average
rate of less than 2000 bps, comparec with the constant 3500 bps output of the Phase |
iLPC system. Both rates apply to non-silence. Neither the Phase ! nor the Phase I
system transmits anything during silence periods exceeding sbou! 200 ms. This is
achieved by using a distance measure between the analysis parameters generated by the
LPC vocoder. The Phase il vocoder operates at a fixed frame rate of about 100
frames/second, using the distance measure to compire each framas’s parameters with the
last set of parameters transmitted. The new parameters are transmitted only if they
differ sufficiently from the previous ones to warrant transmission.

The Phase | LPC system has been implemented and is being tested on the FPS
AP-120B signal processor. This implementation is a special case of Phase ll. Within 4
short time the Phase | LPC system using the FPS will be operational on the ARPANET,
followed shortly thereafter by the Phase Il system.

Hardware Development
Hardware developed for MA-BELL includes

® An interface (the PB-11) which allows four CVSD vocoders to be interfaced to
the PDP-11 through a single DR11-C word-at-a-time interface.

® A silence detection scheme (based on one developed by Lincoln Laboratory) was
implemented as part of the PB-11, allowing the PDP-1} to tell when a speaker
using a CVSD vocoder is silent.

o Two generations of control boxes for conference control and general-purpose
use on the POP-11 (see Figure 6). (Note the decrease in size from the first to
the second generation.)

® A sophisticated telephone-answering and calling system which allows
general-purpose input and output from a touch-tone telephone to and from
the PDP-11.

o S

A
K‘\A N e Nt A A3 koS el

mrastim

SRR b 3 X

NETWORK SECURE COMMUNICATION 68

RESEARCH AND DEVELOPMENT COALS

The overall goal of the NSC project at ISl is to provide high-quality research and
development in all areas concerned with digital voice transmission over packet-switched
networks. Specific goals for future research and development activity are

[ESGCAT AN 3 1o a- oy 1y
* RAKERNL < e adi oty o

TTWRETY

o Further development of on-line conferencing systems.

o Development of dynamic on-line and off-line systems for storage, transmission,
and retrieval of speech, including FTP and voice message capabilities.

integration of speaker authentication and possible isolated word or phrase
recognition into all areas of the network speech systems.

o ——————

o Continued attention to important issues of efficient, human-oriented user
interfaces to network speech systems.

o Implementation and use of two reliable network speech demonstration systems
basad on the FPS AP-120B high-speed signal processing computer.

IMPACT

¢ The NSC effort can be expected to have a broad impact on one nigh-priority military
item, secure digital voice communication. In digital communications in general, the NSC
{ work has provided the prototype of a packet-switched voice communications system.
3 There is littie doubt in anyone’s mind that at some point in the future ali speech
communications will be transmitted digitally, whether it be military, business, or personal
communication. Since packet switching has been proved to be a highly cost-effective and
bandwidth-consarving technique, there wili certainly be many future packet speech
systems. Packet speech techmques can be apphied to any digital transmission medium,
whether it is telephone, radio, satellite, or optical.

T

There will be a need for well-engineered user :ateriaces for any and all tuture
communications systems, an area which 1s often developed as an afterthought, particularly
in areas other than personal and consumer applications.

Packe! speech has clready had an appreciable impact on networking. It was the
first system on the ARPANET to require relatively high bandwidth with low delays without
rigid error detection and/or correction. A new type of message, the Type 3 or
"minimum-eifort” message, was implemented as a direct result of this requirement. The

packet speech system has brought improvements in dynamic network measurements at the
hosi-to-host level, in order to optimize communications, and will bring about more
improvements in dynamic network measurements in the future.

i i T

e

CA s 2 T, N

NET'YORK SECURE COMMUNICATION 69

The signal processing aspects of the NSC effort have ziready had a wide impact on
the speech compression and military communications communities. The ARPA NSC effort
and the people involved in it have greatly influenced the low-cost low-bandwidth vocode:
specified by the DOD consortium, of which ARPA was a member. The LPC aigorithm is
serving as a front eng to authentication systems developed at SCRL and phrase
recognition systems developed at Lincoln Laboratory. Using the NVP, these systems can
and will be used via the ARPANET. There will also be significant impact on other areas,
including operating system design for systems handling high-bsndwidth data such as

speech, practical low-cost high-speec computing systems using signal processors, and, of
course, future network design.

REFERENCES

[MARKEL 72] Markel, John D, "The SIFT Algorithm for Fundamental Frequency

Estimation,” JEEE Transactions on Audio and Elsctroacoustics, Vol. AV-20, No. 5,
December 1972, pp. 367-77.

{MARKEL 74] NSC Note 20, Linear Prediction Analysis/Synthesis Program, John
0. Markel, Spesch Communications Resuvarch Laboratory, Inc., 1974,

[COHEN] Cohen, Dan, Specifications for the Network Voice Protocol, USC/Information
Sciences Institute, ISI/RR-75-39, March 1976.

[VISHU] NSC Note 82, Specifications for ARPA-LPC System II, R. Viswanathan and John
Makhoul, Bolt Beranek & Newman, Inc.

FRADIN Janm‘L‘.t‘.mAL'

¢ 5 2usfat

YT TR PRI SV, FICCNLYEL Y,

e

VYL Y

70

7.
SPECIAL PROJECTS

XEROX GRAPHICS PRINTER

Research Staff:

Stephen D. Crocker
Pete Alfvin
Ronald Currier
Dono van-Mierop

Since its inception, ISI has uncertaken several hardware development efforts in
support of research requirements or {0 demonstrate a capability for a recognized NoD
application. As reported in [AR 74), one of the most significant of these projects is the

development and use of the Xerox Graphics Printer (XGP), a high-quality document printing
capability in the form of a network terminal.

Two XGP systems have been installed, one at ARPA and one at ISI. They provide
high-quality on-line hard copy with proportional spacing of characters according to width.
and use of multiple fonts. This report is an example of the XGP’s capabilities.

From mid-1974, when these systems were installed, until September 1875, the
components of the XGP systems at both ARPA and IS! consisted of a modified Xerox
machine interfaced to a POP-11/40 with 32K words of core and 256K words of disk,
interfaced via a 2400-baud fine to the ARPA TiP, and driven over the ARPANET by any
TENEX system, particularly OFFICE-1, ISI, and ISIB. See Figure 7.1.

During the last halt of 1974 problems with throughput and user controls were
uncovered. These problems are documented in last year’s annual report [AR 75]) To
correct these problems, a short-term project was established to improve these systems.
The primary improvements are background queueing and iransmission of files, overlapped

printing and transmission, and automatic shipment of character sets,

The following specific
steps were taken:

1. The connection between the PDP-11 and the TIP was changed to use a

host interface. Corresponding changes in the software in the PDP-11
were also made.

Printing and transmission have been overlapped to achieve maximum
throughput

3. Shipment of character sets to the PDP-11 1s now performed automztrally,

i et sk o

plan % fa oo g

PP YT ST T, ST INFCP LY W - L PERO A

Ny

~1
-

SPECIAL PROJECTS

‘
) . i g 11 4]

Eoa Pt o

ey

Marti Coa'e Photos

Fugure 7.1 Xerox Graphics Prunter and its processor

Loniloch. e AR

hfy\‘n X S § -

WS F R R U T I T T R T T . ¥ DO R S

G SRTALA L L R R Lt ST B Rl ik A

i

Y

w

SPECIAL PROJECTS 2

4. A new toreground program called XGP has been written to replece the cid
XLIST program. It queues files for printing by a new background process
modeled after the LPT server

5. Defaul’s have beer established so that the user has to supply only the
name of the file to be printed to the XGP prugram.

6. A new device, XGP:, has been installed in TENEX so that users may output
directly to the XGP

Connection of the PDP-11 as a Host

in order to suppor! high-speed network transmission, the hardware of the PDP-1!
has been augmented with a host interface and enough memory to support both the ELF
operating system and the XGP program The total core on each POP-11 1s now 64K
instead of 32K Memory mapping hardware has also been added.

The old software, based on CMU's PDP-11 X3P program, has been repiaced by a
combination of VM ELF and MIT's XGF program Tre VM LLF system provides network and
disk 1/G and address space management MIT's XGP software 15 2 much improved version
of CMU's software, prosiding the same funchions of convarting character codes to raster
Iines suitable for transmission to the XGP hardware

Overilap of Printing with Transmission

Text received from the ARPANET s buffered onto the disk. Printing s initiated
after the first page has been received If transmission is slowed after prinling has started
and the printing process actually catches up to the transmission, printing is interrupted at
the next page boundary. Printing resumes when sufficient text has been received.

In normal cases, throughput of a few kilobits per second s all that 1s required to
keep up with the printing process. Even when TENEX is heavily loaded, :! 1s usually able
to eccomplish this

SPECIAL PROJECTS 73

Atomation of Character Set Shipment

The background TENEX process now accepts commands from the text file to ship
character sets to the PDP-11. Correspondine cnanges tc XOFF to generate these
commands have been made and use of character sets 15 now corirolled entirely by the
commands 1n the text file.

Revision of Core Allocation

The origina. core allocation scheme in the PDP-11 program placed each new font in
progressively increasing memory locations. Eventually, memory space was exhausted and
the printing process was aborted. Since orly two fonts are active at any one time, it s
possible to reuse the space released by previously used fonts. A strategy to reuse the
core space was designed and implemented

Esiatlisi:ment of Defaults for Y¥GP and the PDP-1]

Cetaults for paper size, margins, character sets, and tab stops have been
established so that line-printer-type files print as much as possible as they would on the
printer.

Queueing of Files

The furctions of the original XLIST orogram have been divided into two parts. One
part interacts with the user to accept file names and destinations. it copies the file into
the XGP-PRINTER directory. The second part is a permanent background task which
attempts 10 connect to the XGP and sends files stored in the XGP-PRINTER directory to ..ie
designated XGP.

Conclusion

This system became operational in late 1975. The XGP special project was
disbanded in January 1976 and maintenance of the XGP system is now performed by the
1SI Systems Group of which Pete Alfvin is the principal coo-dinator for the XGP effort.

T e N A A

s Nm Ptaat

R e b

ALY detard ot

-

4
A ity ,xﬁ

SPECIAL PROJECTS 74
References
[AR 74) Annual Technical Report, May 1973 - May 1974, USC/informaticn Sciences

Institute, 15:-SR-74-1, 1974,

paatal

[AR 78] Annual Technical Report, May 1974 - May 197%, USC/informaticn Sciences
Institute, 1S1-SR-75-3, 1975.

NSW SUPPORT

Research Staff:

Stephen D. Crocker
Chios Holg 1
David Wilczynski

The National Software Works (NSW) :s an ARPANET-bazsed distributed operating
system to provide a uniform computing environment for software developers. Services
within the NSW are provided on some of the ARPANET host computers. These computers,
called Too! Bearing Hosts, are connected logically by a centraiized Works Manager whose]
responsibilities include maintaining a singie NSW file system, validating user rights, and
assigning resources. In addition, the NSW includes a user interface, called the Front End,
to give the working community access to the N5W's procedures and facilites. (See ‘
[Carison 74}, (Crocker 75b], and (Millste'r 76, ‘ur 2 deeper view of the NSW.}

Our role in the NSW project was 1o review i2chnical progress and provide
information/consultant service for the project. OQur task involved ftour areas:

D deedoahia n T S ol

® Information and consuiling setvice.

andarfar

e Participation in the design of the System Design Laboratory (S1L) of the
Navai Electronics Laboratory Center (NELC).

] Document control and preparation.

PIWIE P TSN S S

® NSW system testing.

SPIGFNFS TIPSR

]
J
2

L gy o e

SPECIAL PROJECTS 75

Information and Consulting Service

While the NSW was being designv:d, we acted as an information source for potential
'NSW users and othar inter ;sted parties. In particular, we provided seminsrs to the U.S.
Army Electronics Command at Fori Monmouth, New Jersey, the Naval Air Software
Management Advisory Committee (NASMAC) at the Naval Weapons Center at Ctuna Lake,
and the System Oesign Laboratory design team at Naval Electromcs Laboratory Center in
San Diego. We also made presentations at the NBS/ACM/IEEE—~ponsored workshop on
currently available testing tools in Los Angeles Aprsl 1975 [Crocker 75a) ar tive meeting
on Twenty Years of Computer Scierce in Pisa, italy during June, 1975 [Crocker 75b) and
at the October 1975 meeting of the Los Angeles chapter of Sigspace.

SDI. Design with NELC

As an oautgrowth of our mmitial contact with the SOL design team st NELC we were
asked to join their design effort to provide NSW expertise after it became clear that NW
was the appropriate vehicle for their system As active participants, we heiped vesign
their imtial Operating Capabilities for their first demonsiration system. Later we helpcd
wrile their prelimnary design report [NELC 761

As part of this consulting effort we aiso helped produce 3 requirements hist for thetr
tront-end work station [Wilczynski 76] That hst was communicated to the NSW
developers arnd was acled upon by Stanford Research Institute by means of a change in
their front-end specifications.

Document Control and Preparation

IS has been the documentation center for NSW. Continuing responsi'ality for
documentation will rest with Massachusetts Computer Associates (MCA) Transrer oi the
activity 1s in progress. Since early ymplementations of the NSW were TENEX-based, we
received many queries from NSW users about TENEX. To help these users we compiled
two documents as an introduction to the TENEX facilities [Holg 76a, Holg 76b).

NSW System Testing

When the NGSW became a usable TENE'¢ -ysiem, IS! was chosen to house a prototype
version for general use, QOur system usi: helped the develoners unccver bugs. We also
worked directly with the Campus Computer Network peopie at UCLA to help debug the
NSW batch tool interface to their IBM 360 for programs required by the SDL for their 10C
system.

P e e s WL

SPECIAL PROJECTS 76

Since we were the first “outsiders™ to have access to the NSW, we were also the
first tc have detailed knowledge of how tc use the system. Since the NSW user guide was
not due until June 1976, we produced ore on our own initiative {Holg 76c}

References

(Carlson 74] Carlson, W. E, and S. D. Crocker, "The Impaci of Networks on the Soflware
Marketplace,” Proceedings of EASCON 74, October 1974.

(Crocker 75a)] Crocker, S. O, and R. M. Balzer, “The National Snftware Works: A New
Distribution System for Software Development Tools,” Workshop on Currently
Avaiicble Program Testing Tools, sponsored by NBS, ACM and IEEE, April 1975

(Crocher 750 Crocker, S. D, "The Natwonal Software Works: A New Method for Providing
Software Co.slopment Tools Using the ARPANET,” Proceedings from the Meeting on

20 years of Computer Science in [taiy, Pisa, Italy, June 1975 (aiso Calcolo, Vo! Xl
Sutprement §, i875;

[Holg 76.5 Holg, C. S.. Juy of TENEX, USC/information Sciences Institute, Information
Memo, April 1976,

Holg 76b] Hoig, C 5., More Joy of TENEX, LJSC/information Sciences Institule, Information
4 y
Memo, Aprii 1976.

[Holg 76c] Helg, C. S, and D Wiczynski, A Very Preliminary NSW User's Guude,
USC/intormation Sciences Institute, Information Memo, May 1976,

[Millstein 76] #hlisten, R. E., Semi-Annual Technical Report, Massachusetts Computer
Associates, CADD-7603-0411, March 1976.

[{NELC 76] System Design Laboratory Prelvminary Design Report, NELC TN 3145, March
1976.

[Wilczynski 76] Wilczynski, D., A Minumum Front-End Proposal, USC/information Sciences
Institute, Information Memo, February .976.

3 aey 1Y

SPECIAL PROJECTS 77

TERMINAL DEVELOPMENT

Rasearch Se: ff:

Robert H. Stotz

Donald Osstreicher
Robert T. Martin
Dono van-M.erop

Background

A sigrmificant part of the 1A project (Section) 1s devoted to providing good human

engineering to the miitary message service. For the traditioral action officer 10 accept i,
fhe service must be easy and simple 1o use.

This applies particularly to his interaction at
the CRT terminal.

Therefore, we behieve it 15 criticat to provide two-dimensional editing
with instantaneous feedback fram trivial operations, as though the user’s keystrokes
actually performed the operation (insert a3 character, delete 8 character, move cursor,
scroll, «den y a cursor location as bewng data of interest, etc.).

Other more compiex
operations are dealt with as commands to fhe system’s Agent.

For these, inuication of

command input should be instantansous, but longer delay in actually performing the action
is acceptable.

For a message service test where users are separated by the network from the

supporting hos! computer, it 1s impossible to supply the necessary speed of response
uniess processing 15 done at the terminal site. With this two-stage architecture 1n mind,

the IA project has designed a {ront end process (called Terminal Control) as a separable

moduie for locally handling actions in the terminal, Terminal Control currently resides in

TENEX, but 1t 1s being moved to a microprocessor which will then be provided as a part of
each CRT terminal on Qahu.

Terminal Control Functions

The Terminal Control manages the terminal keystroke input ai.d display output. On
input from the keyboard the Terminal Control does local character butfering, text editing,
break determination (when to send the character butfer), local echo to the display, and
text editing (on the input character butfer or the output display butfer), etc. On output to
the terminal it handles muitiple windows (contiguous areas of screen) and domains (logical
blocks of text within windows), dynamic formatting of data in screen win2ews, bu!fering of
more data than can be displayed in a window, scrolling of windows, maintenance of a
logical curso: address, and interface to the rest of the system. Domains have properties
assigned them by their owner (whatever module created the display) such as highlight,

editable, break characters zilowed, etc, which allows the Terminal Control to handle
keystroke input differently in different domains.

R o PV i LA

o e P S

& e el

< LN s Tkl B
P —-MLMAW_M)‘A

e

o YT TN

TR

s al

ica il sy oy

T

TFwT

Tr i TR

TR

SPECIAL PROJCTS 78

The Terminal Contro! 1s general-purpose in nature, so that it can be eftective for
other message services for this test and for applications beyond miiitary message handhng.
With appropriate host software, it will support a variety of styles of command language
input (leletype style, command window styie in the manner of NLS, menu selection style,
etc.) as well as two-dimensional full screen editing. An additional function that must be
provided at the terminal for the Military Message Experiment on Oshu 1s & piece of
hardware that indicates the security level at which the user i1s operating and that provides
several keys for confirming or not confirming changes to his ievel. This equipment, calied

the Security Control Box, must be “trusted” n a secur'ty sense and 1s therefore not to be
incorporated into the terminal microprocessor.

Why These Functions Should Be in the Terminal

For se' - 3l reasons, we believe the terminal is the right location for this processing.

First, good response 15 guaranteed. The biocked nature of the data transfers will reduce

network and TENEX overhead. it also provides maximum configuration flexibiily, since

stand-alone terminals can work through TIPs or data concentrators at any point on the
network. Last, it 1s consistent with the security approach being adopted for the QOahu
test, and for end-to-end encryption, should that ever be added to the system. The trend
i1s toward more capacity per dcllar invested tn each terminal, so that even if this approach
is not the most cost-effective now, we are confident it will be within two or three years.

Terminal Selection

A study of avallable terminals failed o locate one with the desired display
characteristics, and a 64K byte address space, and runming at 1 to 10 microseconds per
instruction; we have theretcre decided to use a new upgraded version of the HP 2640A
terminal, which contains an S080 microprocessor in place of the 8G08. The 2640A was
chosen by ISI a year ago for in-house terminal use because it offered the best design and

reliabiity availlable at that time. In general, IS] has been pleased with the performance of
these terminals.

Plan

The tasic approach for early development of lerminal software is to emulate the
display processor in PRIM (Section 2) and deveiop the bulk of our software there, which
has the advantage of having available the powerful creation and debugging tools of the
PRIM environment. The major shortcoming of this approach is that PRIM has virtually no
1/0, which is the terminal microprocessor’s major activity. Thus, though we can determine

that the individual programs do what we expect thera to do, we cannot check oui the

real-time aspects of the integrated program operation. This step will be done on a

prototype terminai which contains all (64K) read/write memory (RAM).

23

L e aeak o2

oy 232 el asded i

e el Il

PSS Al

SPECIAL PROJECTS 79

YR

Besides the major task of putling the Terminal Confrol into the terminal
microprocessor, some mnor hardware changes are planned. For example, it 1s necessary
to label the ey caps of all the function keys with appropriate mnemonics and to add
external circuitry to drive the Security Control Box.

ToR KT T

At

The plan calls for four terminals equipped with 64K of RAM memory for development
and checkout work, then “production” terminals for the operational test equipped with the
proper mix of ROM (program store) and RAM (data and buffer store). We have estimated
this split to be 16K RAM and 48K ROM. One protolype terminal 1c required for initial
development and debugging. Three more prototypes will then be produced and given to
the message service developers (ISI, B3N, and MIT). After the prototyps unils have been !
shaken down with the message services, “production” terminals will be made for the 1
operational test, a step which involves producing 248 ROM masks at 2 high cne-time cost
(any changes in the firmware after these ROMs have been made will be equady costly)

Production terminals for the test will be delivered together witlh wheeieg tabiex with
toiding wings.

YT AT T TR T T e TR T

TSP PRSI oL 7 LE A ¥

xe.

The Security Control Box will be providea with approximately four LEDs to indicate
the !eve! of security of the screen.

b aavang bl Sa Al

Progress to Date

A specification for the external characteristics of the terminal has been submitted to
the participants in the Military Message Experiment. Internal program specifications have
been written and programming begun. A PRIM 8080 emulator i1s operating and several
routines have been written and checked out on it. 1Si 1s using a prototype of the new HP

terminal for evaluation and initial program development; this will be replaced by an early
production unit, to be purchased when available.

P o resioey

e O a4 amabiliti

b AT @bl SN o5 A e

RITPLTT

8.
ARPANET TENEX SERVICE

i Technical Staff: Support Staff:

' Marion McKinley, Jr. Raiph W. Caldwell
Pote Alfvin Wanda N. Canillas
Alan E. Algustyniak Larry Fye
Dale Chase Oraliw E. Garza
George Dietrich Delia A. Heilig
Glen W. Gauthior Kyle P. Lemmons
Donald R. Lovelace James W. McKinley
Raymond L. Mason Gary Seaton
Willilam H Moore Rennie Simpson
Donna J Nagel Michael £ Viiain
Clarence Perkins Deborah C. Williams

Vernon W Reynolds
Dale S. Russeli
.60 Yamanaka

INTRODUCTION

The IS! ARPANET TEMNEX service facility is operated as s developmant and service
center in support of a broad set of ARPA projects. it currently services more than 1000
directories, some of which ars multiplexed by several users. Approximately 95 percent of
the users access the facilities via the ARPANET from iocations extending from Europe to

Hawaii. All of the facility's systems are available to sil users, whether they are connected
through the ARPANET locally or remotely.

The facility consists of five Digital Equipment Corporation centrai processors (one
Ki-10, one KL-2040, and three KA-10s), Bolt Beranek and Newman virtuai memory paging
boxes, large-capacity memories, on-line swapping and file storage, and associated
peripherals (see Figures 8.1 and 8.2). All systems presently run under control of the
TENEX or TOPS-20 operating system (originally developed by Bolt Beranek and Newman),
which supports a wide variety of simultaneous users.

HARDW ARE

New hardware acquired in . past year includes one additional DEC KL-2040
(TOPS-20) system with 256K words of DEC high-speed internal memory and associated
peripheral devices (Figure 8.3), two CALCOMP 230 disk drives presently attached to ISIC
for additional on-line swapping and file storage capabilities, and a new CALCOMP 347
magnetic tape drive which is shared (as are all IS| magnetic tape facilities) among four
TENEX systems. Figure 8.2 shows the current ISl facility configuration. Note that none o*
the cent.~l processors (KA-10s, KL-2040, or KI-10) operate in dua! processor mode.

XN

I TR

[P P ISR VL E IXIPV D T

5 mn’ﬂ

IPETFET P Tat AT Ty P AT ph Sy T T R S MM SR Sl LA Andor Apea e~ S ipa i e 2o 9 | " > WEET NN R e R R (T T T O ST A e VRS §y S 4T M Py O £ v T o T
_

.

w1004 JOINAIWO) fo ydosBojoyd sjs0dwon) I'g e.mBr4

sl DRI

80)0y) 81807 1jiepy

4

(3
1 o
©
3
4 by
3 &£
2 Q
4 o
3 g 3
O A
o 2
2 3
Q]
® 3
= 3
- 3
8_ F
£ a
3 N ,
3 :
E - E
- © P
£ Y ‘3
z 3 E
o ¥
3 ey
W e
.
2

81
B A s da? L il v

Srcaid Bae 4TS

ARPANET TENEX SERVICF

== JEN RN SO IE PUICIS I AU - P2

A 575 % e dnihg

saun]
leunuaa |
S1 T

2 Sng suep { % sng@ SSEW TuUEsg Sun

eleqQ

i
of-1x N
ned8Is! P

(91) Ssipuwio}
W s19seieQq

198eq 98

(suuRds aul pue ‘$I3(J0NUOD INAIP
‘AJCWAW 4P.OM 1G-9E vy 1'292)

E QIR T R ﬂ
Ks0wow spIom 01 -d0d vy 1292 v ocje - o--v)j £ § 2257"
£ Ai0wew SPIOM O] -ald 2£2°2S
PUC AU JOX W. W 2
1{-0Q0d 10553302y 8021 -a¥ m .mm.
, swtegnag | B 0o6-amw 1eudiS [-5dS Sez £ E
j S H SoUi™ . S . E
m NS} ¢~ umhcmwomo ur e F
0v/11-c0d : § ve
o0t — Sbf1i-a0d E E
1euId)) . m m ;
91 o1-¥) 01-v¥S s £ |
Ndd2 QIS! 4 801 0 \ A g £ teuuzyy ®
ascxejsa] , osepawf |} m w 0i-vS
IEN I +3Nvddt L13NVddY E E
ejeg | v |9 ©20 3 18307 151 £ =
S £ £
1043u0D UURYI [IEFTRES WIISAS g ;
3dv1030 : xa,_..o ¢ 4N Susssadosg A 1o 3u0D 0.0
e ‘ yss9ds H |puveyd-2 u&x.l o
23Mvauy J3IvdyY g " et
o {€9) sleuiwioy) S ;
%813 (o) vooreel i
104u03 1INVIHY 2 H e B
1d 1#90 1885 3uiddems pue 1T : ” S .
=3 3221015 Ay 5D40M g Surddems pue LI e Jt
- . ' H e 20,38
00-20d 091'v96'6L m 2301015 3[1} $D10M
H C1-d0d 0vZ'9vseli ‘
waisds a g
b= T ST
 —— LU
yguueyd-2 1 u\ {Juueys-2 = N La0ss O w. P . %6, 18"
3dV 1OV ¢re 34V 1OVW S g 01-d0d0ST1pAE6L :
g oY e
g reL ey ISt
3u.ddems pue w
2301015 31y SPIOM = 4
- 0!1-d0d 091'v96'64 Xy Aag) S {04ju0) . -
,,a.ﬂumd uo :.vc,c? dnil (e) fe) o) o) £ _mccm..mv-m n,n”“:.ywm»
weysg IS! 2it0 4 H 10 sawnan
- aanQ adey s8alQ ade) H
[AUUR Y- £ [puveud-g fllw
i H]
. sarug Adey Suiddems pue E
1043407 _Lm“-oﬁwmw 1PuLEWI-5 5301035 3y SPIOLA E
o Js_mwa:o T 3dv1030 10 1a-9¢ C00'000'CR H jauueyd
v sjoseje H 01-vsS
SNOUO JYIUASY L 00f 100 m
H
g
£
1
=
z

L b PEA IV \-4
295 | 1357 daY 1 £.0LiAWs [BUIIE YA osasr ¢
Alowdui spJom 01-d0d 912 €6€ weis g ISi 1 C 0v0Z-1% Asowaw: spom 01 -4Gd 03L'62

Ndd 3USH

MGG NN O DA A I

w

IEREHIN RIS N e

FYTISER S) bl $0% s f ot o AR S oS daatad oY S

> s T .j

" . ;
n 1 M.l.l m SSHIIIIMONE I
dasr 1 49X E g 2
) . 3 LERR o) RURE <--Q 1 0<--V E
iowaw 5pIOM G -0d vy 1292 : cle A z
, Bl dOX 3 H j F
11-60d m 105523014 8021-dY :
E eudic | p- 2 ﬁ
a8 006-d N m 1eudic {H-SdS Sd j
0v/l1-cQd | %)
: gy/ 1 ¢Qd
{auueyd m
o 01-vS @udru) F
! 4 80 3 \ : 0:-¥S 2
adejidu| ERTYPENT
L13Mvady 13\vddv 3
'e20~ 230 jevo 1]
104u0) : —
auu 1ouvey>-2 .:.n .w. S .m:..‘.m..u,) :m » 10.4}u0)) 0.2uen
4510 : 1 ysaody ﬂ HUCCML?N TdY D30
y5ir Zd9025C
13NvdNY L3hvduy -~] e
[y (£9) sievnwd L
P (o) ¥ s1ee2ieg = PEEyESY 0
13NvANY audd [4 re fu.'.x‘... 1
301N3G acems pue = LTuvesy
{ ' 832,015 a1; sDI0M duidens pue wers 3 \
0l-d0d €91'v96'6L 390,015 A1} SDIOM
01-dQc 0v2'996'61!
- \Sl.:.lﬂt—:—:%—:z-«]
malsry)
e ™ S
" S Surdde s our]
—— 104uey Uopms J_H.L“muw 2 3%raus A, anu0m g
1Uueyd-2 = ¥ v H ' a1t ant 2oe;.aul H
3419V e 3dviovn - Jhdiisidad fmwmn LN) £
g mumm wwm - M‘ wesia IS £
. 3urddems pue m A ' e W ;
230.0}5 9)'; 5PIOM E Tonuoy — H
01-d0d 091'v96'6L ol 235) sd s g jpuueyd-Z sooan :
uoIAYUOS dirll Oo oo m H xw_O = 30 m ;
\°A d 24mins a rlln.- 53+ 1) de m J H %
A ARCA A ade | 8+ 11Q 3dey H / H
|puueyYd-/ |puueyd-6 -+ g
Y Sar11]) Ade: Sudderas pue W 7 S go1 . m
QULeLI- 3oi01s 3r; spI0OM] . H
1uLRY3-2 T “M.\Mm oww.ooo.ox w DA]) :mw &w_ g
il] i 01-vS g
2 13O, | L £ S £
[O 00 m 5
5ng 550 i v sNQ ssepy m s3u 150uRd5 BV m
1 ersrg W (97) siov widy j 12U Ui Ql m..cuo Ja2ed NGB H
feuueyd v sateieq EX E
01-vS]
" {290unds Buiy DUP *4iAr0JuOD B3P m
acejaju] ' ‘Lipwan spidv N1Q-GC :q>” 29 Ldl ppyw g :
s3sr | L5t duY AIOWaw (UL Y,I») . . F
3020 O1-d0d IIZEEE ., " I iaakiiaz, OVOC — Lo ron ol d0d Dol ove

e o -)

¥ ARPANET TENEX SERVICE 83
|
3
q
3
E
:
i .
; |
3
Mart, Coale Phetos }
Figure £.3 View of computer room with ¥(-2040 in center foreground.
i
Instead, the main goal of having the several systems is ‘0 provide a significant increase in y
’; the availability of the IS| primary machines: Thus if one of the systems designated as a 3
3 primary machine crashes or is unavailable because of hardware/software maintenance or gl
3 development, then one of the other systems may be started as a primary machine and 3
5 service continued after a brief (15 minutes or less) interruption to switch the file storage A
media and one cable. i
Also included within the TENEX service facility are one BBN H-516 Interface $j
; Message Processor (IMP), one BBN H-316 Terminal Interface Processor (TiP), one DEC 4
PDP-11/40 and Xerox Graphics Printer (XGP), one DEC PDP-11/45 with an SPS-41 Signal ¥
Processing System and a Floating Point Systems AP-120B (FBS) (configured as a speech ¢
b processor), one microprogrammable processor (MLP-900) and several associated ;
~ peripheral devices such as disk, memory, special ISI-developed interfaces, TTY’s etc.
':‘ Purchase orders have been submitted for additional hardware, a DEC DN87 Universal ﬁ
{ Synchronous/Asynchronous Front End Communications system that will allow all in-house 5
i users to directly access the in-house (ISIB KI-10) TENEX system. This will eliminate the %
4 requirements for the BBN-31F TIP at ISl. Delivery of this communications equipment is t
’ expected prior to July 31, 1976. Thirty days atter delivery the ISl TIP will he replaced by ?
; a BBN IMP with four host ports, which will aliow 1SI to accommodate two additional host k
systems that will allow additional users to access future ISt systems via the ARPANET, %
E: 1
) :

E;,
B et stk S £

e b e ey

2 R LT s e e e e S X <
e e et 4 s v < =

ARPANET TENEX SERVICE 84

SOFTW ARE

During the yesr a concentrated effort has been made to ensure that all of the ISI
TENEX service machines provided the same level of systems software. TENEX version
1.34 with some necessary local modifications was installed, and the most recent
subsystems and documentation packsges were obtsined and relessed. To aid in this
continuing effort of software maintenance and upgrading, a method for automatically
distributing changes among all iSI service machises is now in tha developmental stage and
will be implemented in the near future. We have also provided losd-leveling across the
machines in conjunction with ARPA/IPTO to assure reasonsble response and greatly
expanded system utilization.

Two major services, XGP printing and file archival, were improved. The XGP driver
software running under TENEX and on the PDP-11 was upgraded and stabilized, XOFF
problems were corrected, and special output options and software interfaces were
implemented (see Section 7 for detasils). This sffort was aiso applied to the ARPA XGP to
bring it to the same level of service, which facilitates system maintenarce. File archival
changes were necessitated by incompatibilities between old magtape drives and the new
CALCOMP magtape system. The old archive library was copied into a new, substantiaily
smaller library, reflecting the most recent format changes; this made the entire library
accessible to all IS| TENEX service machines.

Several members of the software group have been actively engaged in performing
comparisons of the TENEX operating systems with the TOPS-20 operating system. Upon
acceptance of the TOPS-20 system at ISl, maximum effort will be devoted to instaliaticn of
new JSYS’s, JSYS traps, features, and modifications that will aliow the majority of the
existing TENEX subsystems to operate under the TOPS-20 system. Modifications of many
of the existing TENEX subsysiems will also be required as part of this effort. Attempts
will also be made to take the existing ARPA Network Control Protocol in TENEX and, with
appropriate modifications, incorporate it into the TOPS-20 operating system. This, alcng
with a hardware network interface deveioped, assembled, and integrated into the KL-2040
hardware by IS|, will allow the TOPS-20 system to be accessed via the ARPANET.

SUPPORT PERSONNEL

ISI provides seven-day-a-week, twenty-four-hour-a-day operator, software, and
hardware support for the TENEX service facility. At least one operator is physically
on-site at all times, and the systems programmers and computer ssrvice enginears either
are physically on-site or are scheduled for one-hour on-call service.

3
g
:
&
;
4
4
:
K
-
§

PRSP ES SR SO APPSR RPL L DR A LI L NPET PSS B 5 R TR

|
|
l
£
;
;

ARPANET TENEX SERVICE 85

RELIABILITY

To provide required hardware/software preventive ancifor corrective maintsnance
of the equipment, 1Sl will continue scheculing each of the TENEX systoms as “out of
service” (unavailuble to users) for seven contiguous hours each weel. The remaining 161
hours of each week are intended to be devoted entirely (100 percent) to user service.
The actual fong-term up-time for the network service machine has sxceeded 99 percent of
scheduled up-time for the last year.

LOCAL PROJECT SUPPORT

The TENEX facility has been used extensively in support of local projects. The IS
staff makes use oi the available standard subsystems (e.g., editors, compilers, sssemblers,
and utilities), and some staff members have written subsystems and utilities to support
their own projects. The facility also supports less frequently used subsystems at the
special request of users (e.g., PDP-11 cross-assemblers and the DECUS Scientific
Subroutine Package).

Major TENEX monitor modificatiuns and a new suftware driver package for support
of the MLP-900 (microprogrammable processor originally developed for the PRIM project)
have been developed and verified and are now operational on ISID (see Section 2 for
details). These modifications sllow more efficient use of the processor-to-processor
communication facilities between the TENEX operating system and the MLP-S00.

Y g R A T T

e o Amon cmmieww NC o

%
i
I.‘
i
A
]
¢
:
3
4
4
7
g

ree

e PNy

EEN P

PAPTR e

R 2 VP LS DR Vs TR\ E ISR PO L I WV

[DR SN P

RN L P TR T reuN

Gxo aren L

[T

DN e s

BRI FIrae Cag) Bl) — -
N L A - B RKFIIIT =

&6

PUBLICATIONS

Research Reports

Abbott, Russell J, A Command Language Processor for Flexitle Interface Design,
ISi/RR-74-24, February 1975.

Anderson, Robert H., Programmable Automaiion: The Future of Computers in
Marufacturing, ISI/RR-73-2, March 1973; aiso appeared in Datamation, Vol. 18,
No. 12, December 1972, pp. 46-52.

---, and Nake M. Kamrany, Advanced Computer-Based Manufacturing Systems for
Defense Needs, ISI/RR-73-10, September 1973,

Balzer, Robert M., Automatic Programming, I1°1/RR-73-1 (draft only).

-=--, Human Use of World Knowledge, ISI/RR~73-7, March 1974.

--=, Imprecise Program Specification, ISI/RR-75-36, May [976; also appeared in
Calcolo, Vol. Xli, Supplement 1, 1975,

---, Language-Independent Programmer’s Interface, ISI/RR-73-15, March 1974; also
appeared in AFIPS Conference Proceedings, Vol. 43, AFIPS Press, Montvale, N. J,

1974

---, Norton R. Greenfeld, Martin . Kay, William C. Mann, Walter R. Ryder, David
Wilczynski, and Albert L. Zobrist, Domain-Independent Automatic Programming,
ISI/RR-73-14, March 1974; also appeared in Proceedings of the International
Federation of Information Processing Congress, 1974.

Bisbey, Richard L., Jm Carlstedt, Dale M. Chase, and Cennis Hollingworth, Data
Dependency Analysis, ISI/RR-76-45, February 1976.

---, and Gerald J. Popek, Encapsulation: An Approach to Operating System
Security, ISI/RR-73-17, December 1973,

Carlisle, James H.,, A Tutorial for Use of the TENEX Electronic Notebook-Conference
(TEN-C) Sy:tem on the ARPANET, ISI/RR-75-38, September 1975.

)

ALY 0 SN A r i, Jals

-,

DT Tkl MNDATN L AT s €0 R AN T

<A PRI Ak 2L a0 At S e

87

Carlstedt, Jim, Richard L. Bisbey Il, and Gerald J. Pcnek, Pattorn-Directed Protection
Evaluation, ISI/RR-75-31, June 1975,

Cohen, Dan, Specification for the Network Voice ‘Protocot, ISI/RR-75-~39, March 1976.

. Ellis, Thomas Q., Louis Gallenson, John F. Heafner, and John T. Melvin, A Plan for
Consolidation and Automation of Military Telecommunications on Oahu,
ISI/RR-73-12, June 1973.

Gallenson, Louis, An Approach to Providing o User Interface for Military
Computer-"ided Instruction in 1980, 1SI/RR-75-43, December 1975,

Good, Donaid [, Ralph L. London, and W. W, Biedsoe, An Interactive Program
Verification System, I(SI/RR-74-22, fNovember 1974; also appeared in JEEE
Transactions on Software Engineering, Vo, SE-1, No. 1, March 1975, pp. 59-67.

Heafner, John F. A Methodology for Selecting and Refining Man-Computer
Languages to Improve Users’ Performancs, ISI/RR-74-21, September 1974,

‘---, Protocol Analysis of Man-Computer Languages: Design and Preliminary
Findings, |SI/RR-75-34, July 1975.

igarashi, Shigeru, Ralph L. London, and David C. Luckham, Automatic Program
Verification I: A Logical Basis and Its Implementation, ISI/RR-73-11, May 1973;
also appeared in Artificial Intelligence Memo 200, Stanford University, May 1973
and Acta Informatica, Vol. 4, No. 2, 1975, pp. 145-182,

Kamrany, Nake M., A Preliminary Analysis of the Economic Impact of Programmable
Automation Upon Discrete Manufacturing Products, 1SI/RR-73-4, October 1973.

Mann, William C. Dialogue-Based Rescarch in Man-Machine Communication,
ISI/RR-75-41, November 1975,

Martin, Thomas H,, Monty C. Stanford, F. Roy Carlson, and William C. Mann, A Policy
Assessment of Priorities and Functional Needs for the Military Computer-Aided
Instruction Terminal, ISI/RR-75-44, December 1975,

Oestreicher, Donald R., A Microprogramming Language for the MLP~900, ISI/RF-73~8,
June 1973; also appeared in the Proceedings of the ACM Sigplan Sigmicro Interface
Meeting, New York, May 30-June 1, 1973,

Richardson, Leroy, PRIM Overview, ISI/RR-74-19, February 1974,

Rothenberg, Jeff, An Editor to Support Military Message Processing Personnel,
ISI/RR-74-27, Jure 1975.

---, An Intelligent Tutor: On-Lire Documentation and ielp for A Military Message
Service, ISI/RR-74-26, May 1975.

Tugender, Ronald, and Donaid R. Oestreicher, Basic functional Capabilities for a
Military Message Processing Servic:, ISI/RR-74-23, May 1975.

Wilczynski, David, A Process Elaboration Formalism for Writing and Analyzing
Programs, ISI/RR-75-35, October 1475.

Yonke, Martin D, A Knowledgeable, Language-Independent Syste.n for Program
Construction and Modification, ISI/RR-75-42, December 1975.

Special Reports
Annual Technical Repor: May 1972 - May 1973, ISI/SR-73-1, September 1973,

A Research Program in the Field ¢ f Computer Technology, Annual Technical Report,
May 1973 - May 1974, 151/SR-74-2. July 1974.

A Kesearch Program «n Computer Technology, Annual Technical Report, May 1974 -
June 1975, ISI/SR-75-3, September 1975,

Bisbey, Richard L., Geraid Popek, and Jim Carlistedt, Protection Errors tn Operating

Systems: Inconsustency of o Single Data Value Over Time, ISI/SR-75-4, January
1976.

Caristedt, Jim, Protection Errors in Operating Systems: Validation of Crutical
Variables, I1SI/SR-75-5, May 1976.

Hollingworth, Dennis, and Richard L. Bisbey ll, Protection Errors in Operating
Systems: Allocation/Deailocation Restduals, 1S!/SR-76-7, June 1976.
Technical Manuals

Gallenson, Louis, Joel Goldberg, Ray Mason, Donald OQestreicher, and Leroy
Richardson, PRIM User's Manual, ISI/TM-75-1, May 1975.

XED Manual, ISI/TM-76-3, May 1976.

ZZ

S e oetmpregd NS P

VI T AY U O x.mnd

